www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponential- und Logarithmusfu
Exponential- und Logarithmusfu < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponential- und Logarithmusfu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mo 11.09.2006
Autor: TryingHard

Aufgabe
Bestimme die Lösungsmenge.

a) 3^(x-1)=120
b) [mm] 5^x=2*7^{x-1} [/mm]

Hallo liebe Leute,

erstmal: das ist mein erster Beitrag. Deswegen sorry für irgendwelche Formfehler.

Also, bei der Aufgabe a) komme ich klar.
Dort ist mein Lösungsweg folgender:

3^(x-1)      =120
lg(3^(x-1)) =lg120
(x-1)*lg3    =lg120
x-1             =(lg120)/(lg3)
x                = (lg120)/(lg3) +1
x                =5.35777

Das stimmt, wie ich durch das Einsetzen von x erfahren habe.


Jetzt aber mein eigentliches Problem bei Aufgabe b)
Ich schreibe einfach mal, wie ich angefangen habe.

[mm] 5^x [/mm]      =2*7^(x-1)
[mm] lg(5^x) [/mm] =lg(2*7^(x-1))
x*lg5    =(x-1)*lg(2*7)
x           =(x-1)*((lg2*7)/(lg5))
x/(x-1)  =(lg14)/(lg5)
x           =((lg14)/(lg5))+1
x           =2,64

Das stimmt aber ganz sicher nicht, weil: [mm] 5^2.64 [/mm] ungleich 2*7^(x-1)
Ich weiß eigentlich auch, dass ich die "-1" aus dem Bruch von "x/(x-1)=(lg14)/(lg5)" nicht auf der anderen Seite addieren darf, aber ich weiß keinen anderen Weg.

Ich wäre euch sehr dankbar, wenn mir jemand meinen Fehler erklären könnte, bzw. mir einen neuen Anzatz geben könnte, da ich bald eine Klausur schreibe.



Vielen Dank schon jetzt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponential- und Logarithmusfu: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mo 11.09.2006
Autor: Fulla

hallo tryinghard!

dein fehler liegt bei [mm] \lg(2*7^{x-1}) [/mm]

deiner rechnung nach wäre [mm] 2*7^{x-1}=(2*7)^{x-1}, [/mm] aber das ist falsch!

schau mal []hier nach...

du hast ein produkt im logarithmus stehen: [mm] \lg(2*7^{x-1}) [/mm]
das kannst du in eine summe umformen: [mm] \lg(2)+\lg(7^{x-1}) [/mm]

im laufe der rechnung wirst du das noch brauchen können: [mm] \lg(a)-\lg(b)=\lg\left(\bruch{a}{b}\right) [/mm]

ich denke jetzt kommst du allein klar!

[zur kontrolle: ich komme auf [mm]x=\bruch{\lg\bruch{2}{7}}{\lg\bruch{5}{7}}\approx3,7232...[/mm]]

lieben gruß,
Fulla

Bezug
                
Bezug
Exponential- und Logarithmusfu: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:24 Mo 11.09.2006
Autor: TryingHard

Aufgabe
Bestimme die Lösungsmenge.

a) 3^(x-1)=120
b) $ [mm] 5^x=2\cdot{}7^{x-1} [/mm] $

Hi Fulla,

erstmal danke für deine sehr schnelle Antwort.

Leider habe ich immer noch ein Problem mit der Aufgabe, obwohl ich mit deinem Ansatz weiterprobiert habe.

Das habe ich nun:

[mm] 5^x=2*7^{x-1} [/mm]
[mm] \lg(5^x)=\lg(2*7^{x-1}) [/mm]
[mm] x*\lg(5)=\lg(2)+\lg(7^{x-1}) [/mm]
[mm] x*\lg(5)=(x-1)*\lg(7)+\lg(2) [/mm]

Bis hier denke ich ist es richtig, aber das hattest du mir ja praktisch schon genau so geschrieben.  Aber dann...

$ [mm] (x/(x-1))\cdot{}\lg(5)=\lg(7)+\lg(2) [/mm] $
[mm] (x/(x-1))+\lg(5)=\lg(7*2) [/mm]
[mm] (x/(x-1))=\lg(7*2)-\lg(5) [/mm]
[mm] (x/(x-1))=\lg((7*2)/5) [/mm]

Das sieht ja nun ziemlich merkwürdig aus.
Und auch weiß ich nicht mehr, wie ich x alleinstehen lassen kann. Und mit deiner Lösung zur Kontrolle hat das auch wenig zu tun.


Ich wäre sehr dankbar über eine weitere Antwort und Hilfe.

Bezug
                        
Bezug
Exponential- und Logarithmusfu: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Mo 11.09.2006
Autor: PStefan

Hi,

ja, dies stimmt noch:

x*lg(5)=(x-1)*lg(7)+lg(2)

aber dann bekommst du irgendwie Streß und tust- ein österreichischer Begriff- hudeln, also immer mit der Ruhe *gg* :-):
x*lg(5)=x*lg(7)-lg(7)+lg(2)
x*lg(5)-x*lg(7)=lg(2)-lg(7)
[mm] x*(lg(5)-lg(7))=lg(\bruch{2}{7}) [/mm]
[mm] x=\bruch{lg(\bruch{2}{7})}{(lg(5)-lg(7))} [/mm]
x=3,723

na, nun alles klar(er)?

Gruß
Stefan


Bezug
                                
Bezug
Exponential- und Logarithmusfu: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Mo 11.09.2006
Autor: TryingHard

Vielen Dank für die schnelle Hilfe!

Jetzt hab ich's.


Tolles Forum!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de