www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - Exponentialform in Normalform
Exponentialform in Normalform < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialform in Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Do 06.02.2014
Autor: bavarian16

Aufgabe
Addieren Sie folgende komplexe Zahlen:

a) [mm](4-2i)+\wurzel{2}e^{-i\bruch{\pi}{4}} [/mm]

Zuerst muss ich die beiden in die gleiche Form bringen:
[mm]\wurzel{2}e^{-i\bruch{\pi}{4}} [/mm]in Normalform.
Der Betrag [mm] (\wurzel{2}) [/mm] ist ja [mm] \wurzel{a^2+b^2}. [/mm]
Und das Argument [mm] (\pi/4) [/mm] ist [mm] arctan(\bruch{b}{a}) [/mm]

Wie komm ich jetzt auf a bzw. b?
Und auch wenn es einfacher wär die andere komplexe Zahl in die exp. Form umzuschreiben, wäre es nett wenn ihr mir die Umformung von normalenform in Exp.form zeigen könntet.

        
Bezug
Exponentialform in Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Do 06.02.2014
Autor: Sax

Hi,

> Addieren Sie folgende komplexe Zahlen:
>  
> a) [mm](4-2i)+\wurzel{2}e^{-i\bruch{\pi}{4}}[/mm]
>  Zuerst muss ich die beiden in die gleiche Form bringen:
>  [mm]\wurzel{2}e^{-i\bruch{\pi}{4}} [/mm]in Normalform.
>  Der Betrag [mm](\wurzel{2})[/mm] ist ja [mm]\wurzel{a^2+b^2}.[/mm]
>  Und das Argument [mm](\pi/4)[/mm] ist [mm]arctan(\bruch{b}{a})[/mm]

Das Argument der zweiten Zahl ist [mm] -\bruch{\pi}{4}. [/mm]
Das heißt, dass die Zahl auf der Winkelhalbierenden des IV. Quadranten liegt, also auf der Halb-Geraden b=-a mit a>0. Zusammen mit der Gleichung für den Betrag, die du schon angegeben hast, kannst du damit a und b bestimen.

>  
> Wie komm ich jetzt auf a bzw. b?
>  Und auch wenn es einfacher wär die andere komplexe Zahl
> in die exp. Form umzuschreiben, wäre es nett wenn ihr mir
> die Umformung von normalenform in Exp.form zeigen könntet.

Die Addition komplexer Zahlen ist einfacher, wenn sie in der Form z=a+bi vorliegen. Die andere Umwandlung käme bei der Multiplikation in Betracht, denn die ist in Polarkoordinaten einfacher.

Gruß Sax.

Bezug
                
Bezug
Exponentialform in Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Do 06.02.2014
Autor: bavarian16


> Hi,
>  
> > Addieren Sie folgende komplexe Zahlen:
>  >  
> > a) [mm](4-2i)+\wurzel{2}e^{-i\bruch{\pi}{4}}[/mm]
>  >  Zuerst muss ich die beiden in die gleiche Form
> bringen:
>  >  [mm]\wurzel{2}e^{-i\bruch{\pi}{4}} [/mm]in Normalform.
>  >  Der Betrag [mm](\wurzel{2})[/mm] ist ja [mm]\wurzel{a^2+b^2}.[/mm]
>  >  Und das Argument [mm](\pi/4)[/mm] ist [mm]arctan(\bruch{b}{a})[/mm]
>  
> Das Argument der zweiten Zahl ist [mm]-\bruch{\pi}{4}.[/mm]
>  Das heißt, dass die Zahl auf der Winkelhalbierenden des
> IV. Quadranten liegt, also auf der Halb-Geraden b=-a mit
> a>0. Zusammen mit der Gleichung für den Betrag, die du
> schon angegeben hast, kannst du damit a und b bestimen.

Wie mach ich das? Ich kann dir nicht ganz folgen.
Das mit dem 4. Quatranten und der Winkelhalbierenden hab ich verstanden. Aber das ist ja nur ein Spezialfall oder? Meißten ist das Argument ja in irgendeiner Weise mit [mm] \pi [/mm] angegeben. Wie würde ich jetzt zB a und b für das Argument [mm] \pi/6 [/mm] bestimmen?
Hat das was mit dem Einheitskreis zu tun?


Bezug
                        
Bezug
Exponentialform in Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Do 06.02.2014
Autor: Sax

Hi,


> > Das Argument der zweiten Zahl ist [mm]-\bruch{\pi}{4}.[/mm]
>  >  Das heißt, dass die Zahl auf der Winkelhalbierenden
> des
> > IV. Quadranten liegt, also auf der Halb-Geraden b=-a mit
> > a>0. Zusammen mit der Gleichung für den Betrag, die du
> > schon angegeben hast, kannst du damit a und b bestimen.
>  
> Wie mach ich das? Ich kann dir nicht ganz folgen.

Nun, du setzt b=-a in die Gleichung [mm] \wurzel{2}=\wurzel{a^2+b^2} [/mm] ein und erhälst [mm] 2=a^2+(-a)^2=2a^2 [/mm] und damit [mm] a=\pm1, [/mm] wobei wir wegen a>0 nur a=1 gebrauchen können, damit wird b=-1 und schließlich [mm] \wurzel{2}*e^{-\bruch{\pi}{4}}=1-i. [/mm]

>  Das mit dem 4. Quatranten und der Winkelhalbierenden hab
> ich verstanden. Aber das ist ja nur ein Spezialfall oder?
> Meißten ist das Argument ja in irgendeiner Weise mit [mm]\pi[/mm]
> angegeben. Wie würde ich jetzt zB a und b für das
> Argument [mm]\pi/6[/mm] bestimmen?

Genau wie oben, nur ist diesmal der Tangens des Arguments nicht -1, sondern [mm] \bruch{\wurzel{3}}{3}, [/mm] die Halbgerade ist also [mm] b=\bruch{\wurzel{3}}{3}*a [/mm] (a>0)

>  Hat das was mit dem Einheitskreis zu tun?

Es ist [mm] a=|z|*\cos\(arg(z)) [/mm] und [mm] b=|z|*\sin\(arg(z)) [/mm]

Gruß Sax.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de