www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Exponentialfunktion+Forderung
Exponentialfunktion+Forderung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion+Forderung: Bakterienwachstum
Status: (Frage) beantwortet Status 
Datum: 12:35 Di 18.12.2007
Autor: IHomerI

Aufgabe
Es gibts eine Bakterienwachstumsformel, wobei [mm] t_{n}= [/mm] 68 min die Zeit ist in der sich die Bakterien durch Zellteilung vermehren.

[mm] At_{n} [/mm] = [mm] 3\*2^{n} [/mm]                  (1)
                           n= vielfaches von 68 min
                           3= Startwert (beginnt mit drei Bakterien)

Die Funktion A(t), die die Bakterienanzahl der hier betrachteten Bakterienkultur zu jeder Zeit [mm] t\ge0 [/mm] beschreibt, muss die Forderung
       A(t+68) [mm] =2\*A(t) [/mm] für [mm] t\ge0 [/mm]    (2)
erfüllen.
Aufgabe: Warum muss A(t) Gleichung (2) erfüllen? Was bedeutet die Fordeung?
Schreiben Sie A(t) als Exponentialfunktion zur Basis 2 und zeigen Sie, dass die Forderung (2) erfüllt wird.
Wieviele Bakterien befinden sich nach 17std und 20 min in 1 ml Nährlösung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also ich habe alles bishierhin geschafft. Der Aufgabenteil hier oben ist Aufgabenteil d) auf meinem Blatt.

Aber hier komm ich irgendwie nicht weiter. Das hört sich nichtmal schwer an, aber ich weis nicht, wie ich die Forderung als erfüllt zeige und und wie ich dann A(t) als exponentialunktion zur Basis 2 schreibe.

könntet Ihr mir da eventuell helfen?

Wär echt supi, heng hier einfach fest.
Dankee

        
Bezug
Exponentialfunktion+Forderung: Verdoppeln
Status: (Antwort) fertig Status 
Datum: 11:28 Mi 19.12.2007
Autor: Infinit

Hallo IHomerI,
die Forderung bedeutet doch nichts weiter als dass sich die Bakterien alle 68 min verdoppeln. In der Gleichung hast Du den Zusammenhang gegeben zwischen der Anzahl der Bakterien zu einer Zeit t und 68 min später. Die Art des Wachstums ist auch bekannt, es ist eine Verdoppelung, die da stattfindet. Sind zum Zeitpunkt t = 0 N Bakterien vorhanden, so lässt sich die Anzahl der Bakterien für einen späteren Zeitpunkt schreiben als
$$ A(t) = N * [mm] 2^{\bruch{t}{68 min}} [/mm] $$
Wenn Du in diese Gleichung den Zeitpunkt 68 Minuten einsetzt, kommt genau heraus, dass es dann 2 N Bakterien gibt.
Damit ist dann auch der letzte Aufgabenteil leicht lösbar.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de