www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Exponentialfunktion
Exponentialfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:25 So 29.11.2009
Autor: artic3000

Hallo,

finde leider keine Antwort auf meine Frage. Die Exponentialfunktion mit Basis e wächst schneller als jede Potenzfunktion. Das ist mir bereits bekannt. Wächst sie aber auch schneller als jede Linearkombination von Potenzfunktionen, also z.B. [mm] 17x^{4}-3x^{3}+3? [/mm]
Es gilt ja dann auch, dass die Exponentialfunktion mit Basis a schneller wächst als jede Potenzfunktion, da [mm] a^{x}=(e^{lna})^{x}=e^{xlna} [/mm] und somit wieder eine Exponentialfunktion mit Basis e ist, ist das richtig?

DAnke für Eure Hilfe.



        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 So 29.11.2009
Autor: Merle23


> Hallo,
>
> finde leider keine Antwort auf meine Frage. Die
> Exponentialfunktion mit Basis e wächst schneller als jede
> Potenzfunktion. Das ist mir bereits bekannt. Wächst sie
> aber auch schneller als jede Linearkombination von
> Potenzfunktionen, also z.B. [mm]17x^{4}-3x^{3}+3?[/mm]

Ja, denn z.b. wächst [mm] x^5 [/mm] schneller als das Polynom oben und [mm] e^x [/mm] wächst schneller als [mm] x^5. [/mm]

>  Es gilt ja dann auch, dass die Exponentialfunktion mit
> Basis a schneller wächst als jede Potenzfunktion, da
> [mm]a^{x}=(e^{lna})^{x}=e^{xlna}[/mm] und somit wieder eine
> Exponentialfunktion mit Basis e ist, ist das richtig?

Die Begründung ist nicht so geschickt, da das x ja nun einen Vorfaktor hat.

[mm] a^x [/mm] wächst schneller als jedes Polynom, wenn a strikt größer als 1 ist. Der Beweis läuft analog zu dem, dass [mm] e^x [/mm] schneller als jedes Polynom wächst.

Lg, Alex

Bezug
                
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 So 29.11.2009
Autor: kuemmelsche

Also ich hätte über de l'hospital argumentiert, wenn du den kennst und wenn is dir um große x geht.

[mm] $e^x$ [/mm] abgeleitet bleibt [mm] $e^x$. [/mm] Aber jedes Polynom oft abgeleitet wird iwann mal konstant.

lg Kai

Bezug
                        
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:33 So 29.11.2009
Autor: Merle23

Hi,

es geht auch wesentlich elementarer, nämlich über die Potenzreihenentwicklung von exp.

LG, Alex

Bezug
                                
Bezug
Exponentialfunktion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:35 Mo 30.11.2009
Autor: artic3000

Vielen Dank an alle Helfer :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de