www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Exponentialfunktion/WInkel
Exponentialfunktion/WInkel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion/WInkel: Frage
Status: (Frage) beantwortet Status 
Datum: 23:50 So 14.11.2004
Autor: Mathechecker

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich habe hier eine Aufgabe von der der erste Teil gelöst ist, habe jedoch mit dem zweiten Probleme.

Es geht um eine Kettenlinie zwischen A und B.  y=a(e^kx + e^-kx) a=11 k=0,04 Abstand zwischen A und B=40m.

Seil hängt also in der Höhe von 29,42m. Es hängt 7,42m durch.

Winkel von Kettenlinie mit Vertikalen von Pfahl A = 38°.

Aufgabe: Vergleiche die Kettenlinie mit einer Parabel zweiter Ordnung [mm] (ax^2 [/mm] +c), die auch durch A und B geht und in A mit der Vertikalen denselben Winkel bildet wie die Kettenlinie. Wie weit unterhalb von AB liegt der Scheitel der Parabel?

Wäre sehr dankbar wenn ich möglichst bald eine Antwort bekäme!


        
Bezug
Exponentialfunktion/WInkel: ein Lösungsansatz
Status: (Antwort) fertig Status 
Datum: 10:54 Mo 15.11.2004
Autor: lies_chen

wäre:

[mm] Y=11(e^{0,04x} [/mm] + [mm] e^{-0,04x}) [/mm]  für x = 0  ergibt sich y = 22

(Stimmt, denn 29,42 – 7,42 = 22)



Tan 38° = m

m = 0,78128563

m = y’ = 2ax = 2*a * x = 0,78128563          

wenn x = 20  folgt a = 0,019532141


c = Schnittpunkt mit der y –Achse  also c = 22

somit y = 0,019532141x² + 22



Grüßele

Lieschen


Bezug
        
Bezug
Exponentialfunktion/WInkel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Mo 15.11.2004
Autor: Paulus

Hallo mathechecker

ich denke, du solltest unbedingt zu deinen Aufgaben deine Lösungsansätze mitliefern, sonst wird deine Frage in eine interessante Wettbewerbsaufgabe umgewandelt, deren beantwortung höchst zufällig ist!

Ich würde generell nicht mit Zahlen rechnen wie 38° etc., sondern einfach die nötigen Bedingungen aufstellen.

Zum Beispiel:

die Parabel hat ja die Form

[mm] $y=ax^{2}+c$ [/mm]

Um diese Parabel zu bestimmen, müssen $a_$ und $c_$ berechnet werden.

Dazu hast du coch 2 Bedingungen:

1) Die Parabel muss durch den Punkt $(20, [mm] 11*(e^{0.8}+e^{-0.8}))$ [/mm] gehen

das Liefert: [mm] $400a+c=11*(e^{0.8}+e^{-0.8})$ [/mm]

2) Die Steigung bei $x=20_$ ist gleich wie die Steigung der gegebenen kettenlinie.

Du brauchst also nur die 1. Ableitung der Kettenlinie zu berechnen, ebenfalls von der Parabel. Wenn du hier für $x=20_$ setzt, ergibt sich die 2. Gleichung, um $a_$ und $c_$ zu bestimmen.

Ich hoffe, du kommst jetzt mit der Aufgabe klar.

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de