www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Exponentialfunktionen
Exponentialfunktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:03 Sa 31.12.2005
Autor: jokey

Aufgabe
In der Natur wird Co abgebaut.
Immer nach 5 min. soll nur noch 60 % der Ausgangsmenge vorhanden sein.
Die Ausgangsmenge ist 5%.

a) Bestimme eine Funktion, die die Entwicklung des CO Abbaus beschreibt
b) Nach welcher Zeit t liegt die Konzentration unter 1 Promille?

Hallo zusammen und schon mal vielen Dank für die Hilfe ...

bei a) habe ich glaube ich schon die Funktion gefunden und zwar:

F(x) = 0,05 * 0,6 hoch 0,2x

nun aber zu b): da habe ich gedacht, ich müsste folgende Gleichung aufstellen:

1/1000 = 0,05 * 0,6 hoch 0.2x

dann habe ich daraus das gemacht:

1/1000 = 0,05 * 0,90 hoch x    

und dann:

1/1000 = 0,045 hoch x

jetzt, sofern das richtig ist weiß ich nicht genau..
mal 1000 beide Seiten multiplizieren??

dann stände da ja:
1=45 hoch x und dann ist die Lösung doch 45.
Aber nach ein bisschen Ausprobieren, habe ich bemerkt, dass aber doch auch schon vor 45 Jahren die 1 Promillegrenze unterschritten wird.

Dann stimmt vielleicht doch die Gleichung nicht??
    



        
Bezug
Exponentialfunktionen: Idee
Status: (Antwort) fertig Status 
Datum: 10:02 So 01.01.2006
Autor: Disap


> In der Natur wird Co abgebaut.
>  Immer nach 5 min. soll nur noch 60 % der Ausgangsmenge
> vorhanden sein.
>  Die Ausgangsmenge ist 5%.
>  
> a) Bestimme eine Funktion, die die Entwicklung des CO
> Abbaus beschreibt
>  b) Nach welcher Zeit t liegt die Konzentration unter 1
> Promille?
>  Hallo zusammen und schon mal vielen Dank für die Hilfe
> ...

Hallo Jokey.

> bei a) habe ich glaube ich schon die Funktion gefunden und
> zwar:
>  
> F(x) = 0,05 * 0,6 hoch 0,2x

Das ist die Funktion wohl eher nicht. Du hast (mindestens) zwei Punkte
[mm] P_{1}(0 [/mm] | 5%) mit 5% =  [mm] \bruch{5}{100} [/mm]
( [mm] P_{2}(5 [/mm] | 60% von [mm] \bruch{5}{100}) [/mm] )
( [mm] P_{2}(5 [/mm] | 60% von [mm] \bruch{5}{100}) [/mm] )
[mm] P_{2}(5 [/mm] | 0.03)

Und aus diesen beiden Punkten bildest du eine Exponentialfunktion mit der allgemeinen Form:

$f(x) = c * [mm] e^{k*x}$ [/mm]

oder

$f(x) = [mm] a*b^x [/mm] $

> nun aber zu b): da habe ich gedacht, ich müsste folgende
> Gleichung aufstellen:
>  
> 1/1000 = 0,05 * 0,6 hoch 0.2x

Das wäre richtig, wenn die Funktion stimmen würde! Man muss die Funktion mit 1Promille (=0.001) gleichsetzen und nach x auflösen.

> dann habe ich daraus das gemacht:
>  
> 1/1000 = 0,05 * 0,90 hoch x    
>
> und dann:
>  
> 1/1000 = 0,045 hoch x
>  
> jetzt, sofern das richtig ist weiß ich nicht genau..
>  mal 1000 beide Seiten multiplizieren??

Das würde gehen, bringt einem aber nichts. WEIL

> dann stände da ja:
>  1=45 hoch x und dann ist die Lösung doch 45.

[notok]

[mm] $0,045^x [/mm] * 1000  [mm] \not= 45^x$ [/mm]

Nach den Potenzgesetzen darfst du das so nicht vereinfachen.
Denn

$2 * [mm] 2^4 \not=4^4$ [/mm]

[mm] $4^4 [/mm] = 256$

[mm] $2\red{(2^4)} [/mm] = [mm] 2*\red{16}=32$ [/mm]


>  Aber nach ein bisschen Ausprobieren, habe ich bemerkt,
> dass aber doch auch schon vor 45 Jahren die 1
> Promillegrenze unterschritten wird.

Angenommen du hast tatsächlich den Term:

[mm] 1=45^x [/mm]

Um das nach x aufzulösen, benötigst du, denn so gehts am einfachsten, den (natürlichen) Logarithmus. Sagt dir das etwas?

> Dann stimmt vielleicht doch die Gleichung nicht??
>      


Viele Grüße Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de