www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Exponentialgleichung
Exponentialgleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mo 28.07.2008
Autor: tedd

Aufgabe
Geben Sie alle Lösungen für folgende Gleichung an:

[mm] e^{2x^2+x+x}+4*e^{x^2-x}=e^{1-3x} [/mm]

Bin mir mit der Lösung nicht 100% sicher...

[mm] e^{2x^2+x+x}+4*e^{x^2-x}=e^{1-3x} [/mm]

ln(x) anwenden:

[mm] ln(e^{2x^2+x+x})+ln(4)+ln(e^{x^2-x})=ln(e^{1-3x}) [/mm]

[mm] 2x^2+x+x+x^2-x+ln(4)=1-3x [/mm]

[mm] 3x^2+3x+ln(4)=0 [/mm]

[mm] x^2+x+\bruch{ln(4)}{3}=0 [/mm]

p/q-Formel:

[mm] x_{1/2}=-\bruch{1}{2}\pm\sqrt{\bruch{1}{4}-\bruch{ln(4)}{3}} [/mm]

Und da die Wurzel negativ wird, gibt es keine Lösungen für die Gleichung.

Ist das so richtig?

Besten Gruß,
tedd

        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Mo 28.07.2008
Autor: Fulla

Hallo ted,

> Geben Sie alle Lösungen für folgende Gleichung an:
>  
> [mm]e^{2x^2+x+x}+4*e^{x^2-x}=e^{1-3x}[/mm]
>  Bin mir mit der Lösung nicht 100% sicher...
>  
> [mm]e^{2x^2+x+x}+4*e^{x^2-x}=e^{1-3x}[/mm]
>  
> ln(x) anwenden:
>  
> [mm]ln(e^{2x^2+x+x})+ln(4)+ln(e^{x^2-x})=ln(e^{1-3x})[/mm]
>  
> [mm]2x^2+x+x+x^2-x+ln(4)=1-3x[/mm]
>  
> [mm]3x^2+3x+ln(4)=0[/mm]
>  
> [mm]x^2+x+\bruch{ln(4)}{3}=0[/mm]
>  
> p/q-Formel:
>  
> [mm]x_{1/2}=-\bruch{1}{2}\pm\sqrt{\bruch{1}{4}-\bruch{ln(4)}{3}}[/mm]
>  
> Und da die Wurzel negativ wird, gibt es keine Lösungen für
> die Gleichung.
>  
> Ist das so richtig?

Leider nein. So einfach kannst du den Logarithmus nicht anwenden.

[mm] $\ln\left(e^{x^2+2x}+4e^{x^2-x}\right)\neq\ln\left(e^{x^2+2x}\right)+\ln\left(4e^{x^2-x}\right)$ [/mm]

Siehe auch []hier.

Bei solchen Aufgaben musst du erst durch geschicktes Umformen ein Produkt erzeugen - dann kannst du den Logarithmus drauf loslassen:
[mm] $\ln(a*b)=\ln(a)+\ln(b)$ [/mm]

Könnte es sein, dass du die Aufgabe falsch abgeschrieben hast? Weil so, wie sie dasteht komme ich auch nicht ohne weiteres auf die Lösung...


Liebe Grüße,
Fulla

Bezug
                
Bezug
Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mo 28.07.2008
Autor: tedd

Ja stimmt!
Das [mm] ln(a+b)\not=ln(a)+ln(b) [/mm] ist habe ich gerade rausgefunden, als du die Antwort schon geschrieben hast :(...

Und dann habe ich die Aufgabe auch noch tatsächlich falsch abgeschrieben.

Sorry!

Es muss richtig heissen:

[mm] e^{2x^2+x+\color{red}1}+4\cdot{}e^{x^2-x}=e^{1-3x} [/mm]

aber beim Produkt formen hatte ich jetzt gerade auch kein Glück.
Ist das ein erster Ansatz?

[mm] e^{2x^2+x+1}+4\cdot{}e^{x^2-x}=e^{1-3x} [/mm]
[mm] e^{2x^2+x+1}+4\cdot{}e^{x^2-x}-e^{1-3x}=0 [/mm]
[mm] e^{x^2}*e^{x^2}*e^x*e^1+4\cdot{}(e^{x^2}*e^{-x})-e^{1}*e^{-3x}=0 [/mm]

Irgendwie krieg ich es grad nicht hin das weiter umzuformen, werde mich gleich aber nochmal dran machen...


Bezug
                        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mo 28.07.2008
Autor: abakus


> Ja stimmt!
>  Das [mm]ln(a+b)\not=ln(a)+ln(b)[/mm] ist habe ich gerade
> rausgefunden, als du die Antwort schon geschrieben hast
> :(...
>  
> Und dann habe ich die Aufgabe auch noch tatsächlich falsch
> abgeschrieben.
>  
> Sorry!
>  
> Es muss richtig heissen:
>  
> [mm]e^{2x^2+x+\color{red}1}+4\cdot{}e^{x^2-x}=e^{1-3x}[/mm]
>  
> aber beim Produkt formen hatte ich jetzt gerade auch kein
> Glück.
>  Ist das ein erster Ansatz?
>  
> [mm]e^{2x^2+x+1}+4\cdot{}e^{x^2-x}=e^{1-3x}[/mm]
>  [mm]e^{2x^2+x+1}+4\cdot{}e^{x^2-x}-e^{1-3x}=0[/mm]
>  
> [mm]e^{x^2}*e^{x^2}*e^x*e^1+4\cdot{}(e^{x^2}*e^{-x})-e^{1}*e^{-3x}=0[/mm]
>  
> Irgendwie krieg ich es grad nicht hin das weiter
> umzuformen, werde mich gleich aber nochmal dran machen...

Hallo,
man könnte die Gleichung durch [mm] e^{1-3x} [/mm] teilen und erhält
[mm] e^{2x^2+4x}+4*e^{x^2+2x-1}=1 [/mm]

[mm] e^{2x^2+4x}+\bruch{4}{e}*e^{x^2+2x}=1 [/mm]

[mm] (e^{x^2+2x})^2+\bruch{4}{e}*e^{x^2+2x}-1=0 [/mm]

Ich kann mich des Eindrucks nicht erwehren, dass das eine quadratische Gleichung ist.
Gruß Abakus



>  


Bezug
                                
Bezug
Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Mo 28.07.2008
Autor: tedd

Wie "sieht" man denn sowas? Übung/Erfahrung?
Nunja... :)


[mm] (e^{x^2+2x})^2+\bruch{4}{e}\cdot{}e^{x^2+2x}-1=0 [/mm]

Dann substituiere ich: [mm] e^{x^2+2x}:=z [/mm]

[mm] z^2+\bruch{4}{e}*z-1=0 [/mm]

p/q-Formel: [mm] z_{1/2}=-\bruch{2}{e}\pm\sqrt{\bruch{4}{e^2}+1} [/mm]

[mm] z_1\approx0,51 [/mm]
[mm] z_2\approx-1,98 [/mm]

Rücksubstituieren: [mm] z=e^{x^2+2x} [/mm]
[mm] 0,51=e^{x^2+2x} [/mm]
[mm] ln(0,51)=x^2+2x [/mm]
[mm] 0=x^2+2x+0,68 [/mm]

p/q-Formel:
[mm] x_{1/2}=-1\pm\sqrt{1-0,68} [/mm]

[mm] x_1=-0,44 [/mm]
[mm] x_2=-1,56 [/mm]

und [mm] z_2 [/mm] kann nicht rücksubstituiert werden weil [mm] z_2<0... [/mm]

;)
Danke für eure Mühe,
besten Gruß,
tedd

Bezug
                                        
Bezug
Exponentialgleichung: sieht gut aus ...
Status: (Antwort) fertig Status 
Datum: 19:21 Mo 28.07.2008
Autor: Loddar

Hallo Tedd!


Ja, da spielt dann schon etwas Erfahrung mit ...


Deine Rechnung sieht nunmehr gut aus - ich konnte keinen Fehler entdecken.


Gruß
Loddar


Bezug
                                                
Bezug
Exponentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Mo 28.07.2008
Autor: tedd

Hey!
Danke für's drüber schauen Loddar!
[ok]
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de