www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialgleichungen
Exponentialgleichungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichungen: Widerspruch
Status: (Frage) beantwortet Status 
Datum: 08:56 Do 12.04.2018
Autor: wolfgangmax

Aufgabe
<br>
5*3^(2x-1)=4^(x-3)
 


<br>Zu dieser Exponentialgleichung habe ich zwar eine Lösung, aber für mich liegt trotzdem ein Widerspruch vor:
- meine Lösung: x= -5,76, x eingesetzt in die Gleichung ergibt eine wahre Aussage
- die Gleichung forme ich um in eine Funktion, die dann den Funktionswert Null ergibt. 
- Und jetzt der Widerspruch: Eine Exponentialfunktion hat keine Nullstelle, lt Rechnung aber doch.
Wo liegt mein Denk- bzw. Rechenfehler?

Hier meine Lösungsweg:
         5*3^(2x-1)=4^(x-3)
    [mm] 5*3^{2x}*3^{-1}=4^x*4^{-3} [/mm]
        [mm]  3^{2x}*5/3=4^x*1/64 [/mm]
            [mm] 9^x*5/3=1/64  [/mm]  (dividiert durch [mm] 4^x) [/mm]
        [mm] (9/4)^x*5/3=1/64  [/mm]   (dividiert durch 5/3)
            [mm] (9/4)^x=0,009375 [/mm]
   log zur Basis (9/4) 0,009375=x
                  x= -5,76

MfG
wolfgangmax

 

        
Bezug
Exponentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Do 12.04.2018
Autor: Diophant

Hallo,

> 5*3^(2x-1)=4^(x-3)
>  

>

> Zu dieser Exponentialgleichung habe ich zwar eine
> Lösung, aber für mich liegt trotzdem ein Widerspruch
> vor:
> - meine Lösung: x= -5,76, x eingesetzt in die Gleichung
> ergibt eine wahre Aussage
> - die Gleichung forme ich um in eine Funktion, die dann
> den Funktionswert Null ergibt.

Man kann nicht eine Gleichung in eine Funktion umformen. Was du vermutlich meinst, ist die Gleichung auf die Nullform zu bringen und den (auf der anderen Seite der Gleichung) entstandenen Term als Funktionsterm aufzufassen, also bspw. so:

[mm]5*3^{2x-1}-4^{x-3}=0[/mm]

> - Und jetzt der Widerspruch: Eine Exponentialfunktion hat
> keine Nullstelle, lt Rechnung aber doch.
> Wo liegt mein Denk- bzw. Rechenfehler?

Wenn ich mit meiner Vermutung richtig liege, dann ist das ja keine Exponentialfunktion mehr, sondern eine Summe bzw. Differenz zweier Exponentialfunktionen. So eine Differenz kann selsbtverständlich Nullstellen besitzen (sonst hätte die Grundgleichung ja keine Lösung!).

> Hier meine Lösungsweg:
>          5*3^(2x-1)=4^(x-3)
>     [mm]5*3^{2x}*3^{-1}=4^x*4^{-3}[/mm]
>         [mm] 3^{2x}*5/3=4^x*1/64[/mm]
>             [mm]9^x*5/3=1/64 [/mm]  (dividiert durch [mm]4^x)[/mm]
>         [mm](9/4)^x*5/3=1/64 [/mm]   (dividiert durch 5/3)
>             [mm](9/4)^x=0,009375[/mm]
>    log zur Basis (9/4) 0,009375=x
>                   x= -5,76

Die Lösung stimmt, ich habe es nochmal nachgerechnet.


Gruß, Diophant
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de