www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Exponentialgleichungen und Log
Exponentialgleichungen und Log < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichungen und Log: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:29 Di 08.01.2013
Autor: Nomis97

Aufgabe
[mm] 2*(1/3)^x^+^1=5 [/mm]

Wie wird dies gerechnet? Wie sieht der Rechenweg aus?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialgleichungen und Log: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Di 08.01.2013
Autor: pi-roland

Guten Abend,

> [mm]2*(1/3)^x^+^1=5[/mm]
>  Wie wird dies gerechnet? Wie sieht der Rechenweg aus?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

hattet ihr dazu eine Beispielaufgabe, oder müsst ihr das selbst herausfinden?
Kleine Hilfe: Logarithmen helfen.

Viel Erflog,

[mm] \pi-\mathrm{rol} [/mm]

Bezug
                
Bezug
Exponentialgleichungen und Log: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Di 08.01.2013
Autor: Nomis97

Erstmal Danke für die schnelle Reaktion. Klar geht es um Logarithmen. Wir formen das aber zuvor immer um - und gerade bei dieser Aufgabe bin ich mir mit meinem Ergebnis (x=10) ziemlich sicher, dass das falsch ist. Mir kommt es auf den den Lösungsweg über die Umformung an, um zu sehen, wo ich meinen Fehler habe.

Bezug
                        
Bezug
Exponentialgleichungen und Log: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Di 08.01.2013
Autor: pi-roland

Guten Abend,

vielleicht ist es dir möglich, deinen Lösungsweg hier aufzuschreiben, damit man sehen kann, wo ein eventueller Fehler liegt.
Vielen Dank,

[mm] \pi-\mathrm{rol} [/mm]

Bezug
                                
Bezug
Exponentialgleichungen und Log: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Di 08.01.2013
Autor: Nomis97

lg 2 * ((x+1) lg 1/3) = lg 5
lg 2 * (x lg 1/3 + lg 1/3) = lg 5
x lg 1/3 + lg 1/3 = lg 5 / lg 2
x lg 1/3 = (lg 5 / lg 2) - lg 1/3
x = ((lg 5 / lg 2) - lg 1/3) / lg 1/3    




Bezug
                                        
Bezug
Exponentialgleichungen und Log: Korrektur
Status: (Antwort) fertig Status 
Datum: 10:22 Mi 09.01.2013
Autor: Roadrunner

Hallo nomis,

[willkommenmr] !!


Es wäre günstiger / einfacher, vor dem Logarithmieren erst derart umzuformen, bis da steht:

[mm]\left(\bruch{...}{...}\right)^{x+1} \ = \ ...[/mm]


Aber auch Dein Weg sollt zum Ziel führen. Jedoch musst Du dann auch die MBLogarithmengesetze korrekt anwenden.

> lg 2 * ((x+1) lg 1/3) = lg 5

[notok] Hier müsste stehen:

[mm]\lg(2) \ \red{+} \ (x+1)*\lg\left(\bruch{1}{3}\right) \ = \ \lg(5)[/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de