www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Exponentialverteilung
Exponentialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:03 Mo 04.01.2010
Autor: kleine_ente_nora

Aufgabe
Beweisen Sie folgenden Satz:
Es sei eine Funktion F gegeben mit F: [mm] \IR^{+} \to \IR [/mm] und
- F(s+t)=F(s)*F(t)
- F ist auf jedem beschränkten Intervall beschränkt
- [mm] \exists [/mm] t>0: [mm] F(t)\not=0. [/mm]
Dann folgt: [mm] \exists \alpha\in\IR: F(t)=F_{\alpha}(t):=e^{t*\alpha} \forall t\ge [/mm] 0.
Vorschlag für die Beweisstruktur:
a) F ist überall von Null verschieden.
b) F ist überall strikt positiv
c) F ist bei 0 (von rechts) stetig.
d) F ist bei jedem [mm] t\ge [/mm] 0 von rechts stetig.
e) Bestimme [mm] \alpha [/mm] so, dass [mm] F(1)=e^{\alpha}. [/mm] Dann ist [mm] F=F_{\alpha} [/mm] auf [mm] \IQ^{+}. [/mm]
f) Kombiniere d) und e) um die Aussage zu folgern.

Ich verstehe schon a) nicht. Wenn ich eine beschränkte Funktion habe, dann kann es doch durchaus Sprungstellen geben und egal wie klein ich mein Intervall wähle, dort kann doch eine Sprungstelle auf Null sein. Ich habe bereits gezeigt, dass F(0)=1 gelten muss, aber das hilft mir doch auch nicht, denn schon bei 1,000000000000001 kann die Funktion doch auf Null springen, oder?
Kann mir da jemand helfen? Dank euch schonmal im Voraus. Nora

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Mo 04.01.2010
Autor: steppenhahn

Hallo,

> Beweisen Sie folgenden Satz:
>  Es sei eine Funktion F gegeben mit F: [mm]\IR^{+} \to \IR[/mm] und
>  - F(s+t)=F(s)*F(t)
>  - F ist auf jedem beschränkten Intervall beschränkt
>  - [mm]\exists[/mm] t>0: [mm]F(t)\not=0.[/mm]
>  Dann folgt: [mm]\exists \alpha\in\IR: F(t)=F_{\alpha}(t):=e^{t*\alpha} \forall t\ge[/mm]
> 0.
>  Vorschlag für die Beweisstruktur:
> a) F ist überall von Null verschieden.
> b) F ist überall strikt positiv
> c) F ist bei 0 (von rechts) stetig.
> d) F ist bei jedem [mm]t\ge[/mm] 0 von rechts stetig.
> e) Bestimme [mm]\alpha[/mm] so, dass [mm]F(1)=e^{\alpha}.[/mm] Dann ist
> [mm]F=F_{\alpha}[/mm] auf [mm]\IQ^{+}.[/mm]
> f) Kombiniere d) und e) um die Aussage zu folgern.

Deine Vermutungen über die Sprungstellen treffen eben nicht zu, wenn du eine Funktion mit obigen Eigenschaften hast.
Hier ein Tipp erstmal zu a) und b):

Wenn du weißt, dass ein t > 0 existiert, für das [mm] F(t)\not= [/mm] 0, dann kannst du mit der ersten Eigenschaft folgern:

F(2*t) = F(t)*F(t) = [mm] (F(t))^{2} [/mm] > 0.

Und ähnlich zumindest erstmal F(n*t) [mm] \not= [/mm] 0 für alle [mm] n\in\IN. [/mm]
Nun haben wir praktisch die Eigenschaft benutzt, um über die "linke Seite" F(s+t) etwas auszusagen, jetzt versuchen wir dasselbe für die rechte Seite:

0 [mm] \not= [/mm] F(t) = F(1/2*t)*F(1/2*t),

Durch geschickte Aufteilung (zum Beispiel wähle [mm] q\in\IR_{+}, [/mm] q < 1 beliebig), kannst du somit für alle [mm] x\in(0,1) [/mm] mit Hilfe von [mm] 0\not= [/mm] F(t) = F(q*t)*F((1-q)*t) folgern, dass F dort [mm] \not= [/mm] 0 ist (wenn einer der Faktoren 0 wäre, könnte nichts rauskommen, was ungleich 0 ist).
Mit der obigen Folgerung für die natürlichen Zahlen hast du dann a) schon fertig.

Zu b):

Nun musst du damit arbeiten, dass du zum Beispiel für F(2*t) > 0 aussagen kannst. Außerdem (siehe F(t) = F(1/2*t)*F(1/2*t9) bekommst du die Aussage auch für F(t) > 0. Damit kannst du die Aussage für alle F(n*t) > 0 schon wieder beweisen.
Nun überlege selbst, was mit den Zahlen dazwischen ist!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de