www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentielles Wachstum
Exponentielles Wachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentielles Wachstum: Idee
Status: (Frage) beantwortet Status 
Datum: 14:42 Mo 22.11.2010
Autor: Polynom

Aufgabe
1. Die Eigenschaften exponentielles Wachstums beschreiben!
2. Die speziellen Eigenschaften der e-Funktion angeben und anwenden!

Hallo,
bei Eigenschaften der Exponentialfunktion habe ich: Nullstellen, Gemeinsamer Punkt, Monotonie, Asymptote, Uneigentliche Grenzwerte, zusammenhang von Graphen, zusammenhang mit der e-Funktion, Ableitung der Exponentialfunktion, Integral der Exponentialfunktion, Definitionsbereich, Wertebereich.
Aber was sind die eigenschaften des exponentiellen Wachstums?
Und was ist mit speziellen Eigenschaften gemeint??
Vielen Dank für eure Antworten!

        
Bezug
Exponentielles Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mo 22.11.2010
Autor: fred97


> 1. Die Eigenschaften exponentielles Wachstums beschreiben!
>  2. Die speziellen Eigenschaften der e-Funktion angeben und
> anwenden!
>  Hallo,
>  bei Eigenschaften der Exponentialfunktion habe ich:
> Nullstellen, Gemeinsamer Punkt, Monotonie, Asymptote,
> Uneigentliche Grenzwerte, zusammenhang von Graphen,
> zusammenhang mit der e-Funktion, Ableitung der
> Exponentialfunktion, Integral der Exponentialfunktion,
> Definitionsbereich, Wertebereich.
>  Aber was sind die eigenschaften des exponentiellen
> Wachstums?

Google ist Dein Freund:  http://de.wikipedia.org/wiki/Exponentielles_Wachstum


>  Und was ist mit speziellen Eigenschaften gemeint??

Und schon wieder ist Google Dein Freund: http://www.mathe-online.at/mathint/log/i.html


Dein Freund FRED

>  Vielen Dank für eure Antworten!


Bezug
        
Bezug
Exponentielles Wachstum: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:04 Do 25.11.2010
Autor: Polynom

Hallo,
ich habe noch einmal eine Frage.
Was ist die spezielle Eigenschaft der e-Funktion (angeben und anwenden)?
Vielen Dank für eure Antworten!

Bezug
                
Bezug
Exponentielles Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Do 25.11.2010
Autor: M.Rex

Hallo

Allgemeine Exponentielle Funktionen der Form [mm] f(x)=a^{x} [/mm] haben ja die Ableitung [mm] f'(x)=\ln(a)*a^{x}. [/mm]

Jetzt überlege mal, was wohl das spezielle an [mm] f(x)=e^{x} [/mm] ist.

Marius


Bezug
                        
Bezug
Exponentielles Wachstum: Korrektur
Status: (Frage) überfällig Status 
Datum: 14:12 Do 25.11.2010
Autor: Polynom

Also das spezielle daran ist, dass die erste Ableitung der e-Funktion mit der normalen e-Funktion übereinstimmt oder?
Aber was ist mit anwenden gemeint?
Vielen Dank für eure Antworten!

Bezug
                                
Bezug
Exponentielles Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Do 25.11.2010
Autor: moody

Guten abend,

Doppelpostings sind unnötig, wenn du  einer Frage nachträglich etwas zufügen möchtest oder sie ändern möchtest, dann ediere síe bitte.
Wenn jemand hilfsbereites deine Frage sieht wird er sie auch beantworten wenn er Zeit hat, mehrfaches Posten führt nicht unbedingt zu einer schnelleren Antwort.

Bei deiner Frage kann ich dir leider nicht weiterhelfen was die Anwendung angeht. Aber $f(x) = [mm] e^x$ [/mm] $f'(x) = [mm] e^x$ [/mm] hast du schon richtig als spezielle Eigenschaft erkannt.

lg moody

Bezug
                                
Bezug
Exponentielles Wachstum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 27.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de