www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Extrema
Extrema < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema: Frage
Status: (Frage) beantwortet Status 
Datum: 09:40 Do 23.06.2005
Autor: bobby

Ich habe folgende Funktion auf Minima und Maxima und Sattelpunkte zu untersuchen: [mm] f(x,y)=e^{x}xsin(y) [/mm]

Die Ableitungen habe ich bestimmt:

[mm] f'(x,y)=(e^{x}(x+1)sin(y) [/mm] , [mm] e^{x}xcos(y)) [/mm]
[mm] f''(x,y)=(e^{x}(x+2)sin(y) [/mm] , [mm] e^{x}(x+1)cos(y) [/mm] , [mm] e^{x}(x+1)cos(y) [/mm] , [mm] -e^{x}xsin(y)) [/mm]

Für Extrema gilt ja: f'(x,y)=0
Daraus ergaben sich bei mir folgende Lösungen: (x,y)=(0, [mm] (2k-1)\bruch{\pi}{2}) [/mm] und [mm] (x,y)=(0,k\pi) [/mm]

Die habe ich in f'' eingesetzt und da erhielt ich folgendes: f''(0, [mm] (2k-1)\bruch{\pi}{2})=(2, [/mm] 0 , 0 , 0) und [mm] f''(0,k\pi)=(0 [/mm] , -1 , -1 , 0) , so jetzt weis ich aber nicht so richtig wie/ob ich daraus jetzt Definitheit/Indefinitheit also Minima/Maxima schließen kann und wie das sich mit den Sattelpunkten verhält, ...

        
Bezug
Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Do 23.06.2005
Autor: angela.h.b.


> Ich habe folgende Funktion auf Minima und Maxima und
> Sattelpunkte zu untersuchen: [mm]f(x,y)=e^{x}xsin(y)[/mm]
>  
> Die Ableitungen habe ich bestimmt:

Hallo bobby,
Deine Ableitungen habe ich nicht nachgerechnet, wir nehmen sie mal als richtig, und sortieren den Rest.

> [mm]f'(x,y)=(e^{x}(x+1)sin(y)[/mm] , [mm]e^{x}xcos(y))[/mm]

>  [mm]f''(x,y)=(e^{x}(x+2)sin(y)[/mm] , [mm]e^{x}(x+1)cos(y)[/mm] ,
> [mm]e^{x}(x+1)cos(y)[/mm] , [mm]-e^{x}xsin(y))[/mm]

Meinst Du hier die Hessesche Matrix? Du solltest sie meinen...

f''(x,y)= [mm] \pmat{ e^{x}(x+2)sin(y) & e^{x}(x+1)cos(y) \\ e^{x}(x+1)cos(y) & -e^{x}xsin(y))} [/mm]

>  
> Für Extrema gilt ja: f'(x,y)=0

Stimmt. Das ist eine notwendige Bedingung.

>  Daraus ergaben sich bei mir folgende Lösungen: (x,y)=(0,
> [mm](2k-1)\bruch{\pi}{2})[/mm] und [mm](x,y)=(0,k\pi)[/mm]

Deine erste Lösung in f' eingesetzt ergibt nicht (0,0). Ist wohl ein kl. Schreib- oder Rechenfehler.

>  
> Die habe ich in f'' eingesetzt und da erhielt ich
> folgendes:

Dieses Vorgehen ist im Prinzip richtig. Machen wir's mal mit deiner zweiten Lösung:

k gerade ergibt [mm] f''((0,k\pi))= \pmat{ 0 & 1 \\ 1 & 0 }, [/mm]
k ungerade:  [mm] f''((0,k\pi))= \pmat{ 0 & -1 \\ -1 & 0 } [/mm]

> so jetzt weis ich aber
> nicht so richtig wie/ob ich daraus jetzt
> Definitheit/Indefinitheit also Minima/Maxima schließen kann
> und wie das sich mit den Sattelpunkten verhält, ...

Es ist so:
negativ definit==>Maximum
positiv definit==> Minimum
indefinit==>Sattelpunkt
weder noch ==> ohne nähere Untersuchungen weiß man nichts.

Die Definitheit prüft man entweder, indem man die Eigenwerte bestimmt. Alle EWe pos==> pos.def.
alle EWe neg. ==> neg. def.
pos. und neg. EW ==> indefinit

Oder man schaut für beliebiges (x,y) [mm] \in \IR^{2} [/mm]
(x,y)*Hessematrix* [mm] \vektor{x \\ y} [/mm] an und schaut, ob die Ergebnisse immer positiv sind (pos. def.), immer negativ (neg.def.) oder ob positive und negative vorkommen können (indef.). Für  [mm] \IR^{n} [/mm] gilt das entsprechend.

Ich denke, Du kommst jetzt weiter, oder?
Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de