www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Extrema Polynom
Extrema Polynom < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:28 Do 17.03.2011
Autor: Loriot95

Aufgabe
Es sei p: [mm] \IR [/mm] -> [mm] \IR [/mm] ein Polynom vom Grad n mit n > 0 gerade.
Zeigen Sie: Entweder nimmt p ein absolutes Minimum oder ein absolutes Maximum an.

Guten Morgen,

bräuchte bei der Aufgabe eure Hilfe. Ich habe bis jetzt folgendes:
Zu zeigen: [mm] \exists [/mm] c [mm] \in \IR: [/mm] P(c) [mm] \ge [/mm] P(x) für alle x [mm] \in \IR. [/mm]
Sei P: [mm] \IR [/mm] -> [mm] \IR, [/mm] P(x) = [mm] \summe_{i=0}^{n} a_{i}*x^{i} [/mm] ein beliebiges Polynome mit n = 2k für k [mm] \in \IN. [/mm] Der Grad des Poylnomes ist gerade also wäre der Grad der Ableitung ungerade. Es ist [mm] P:\IR [/mm] -> [mm] \IR, [/mm] P'(x) = [mm] \summe_{i=1}^{n} ia_{i}*x^{i-1}. [/mm] Und ab hier weiß ich leider nicht wirklich weiter. Hoffe ihr könnt mir weiter helfen.

LG Loriot95

        
Bezug
Extrema Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Do 17.03.2011
Autor: fred97

Du brauchst keine Ableitung.

Sei $P(x) = [mm] \summe_{i=0}^{n} a_{i}\cdot{}x^{i} [/mm] $  mit n = 2k

Fall 1: [mm] a_n>0. [/mm]  Dann: $P(x) [mm] \to \infty$ [/mm]  für $x [mm] \to \pm \infty$. [/mm] (Warum ?)  . Also ex. ein R>0 mit:

                      P(x)>|P(0)|   für jedes x mit |x|>R.

Weiter ex. ein [mm] x_0 \in [/mm] [-R,R]  mit :

                  (1) [mm] P(x_0) \le [/mm] P(x)  für jedes x [mm] \in [/mm] [-R,R]

Warum ??.

Also auch  [mm] P(x_0) \le [/mm] P(0).

Wir haben dann

                  (2)  [mm] P(x_0) \le [/mm] P(0) [mm] \le [/mm] |P(0)| <P(x)   für jedes x mit |x|>R.

Aus (1) und (2) folgt: P nimmt in [mm] x_0 [/mm] sein absolutes Minimum an.

Fall 2: [mm] a_n<0. [/mm] Jetzt Du ! (Du kannst Dir das Leben vereinfachen, wenn Du zu -P übergehst)

FRED

Bezug
                
Bezug
Extrema Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Do 17.03.2011
Autor: Loriot95

Vielen Dank für deine Hilfe.

> Du brauchst keine Ableitung.
>  
> Sei [mm]P(x) = \summe_{i=0}^{n} a_{i}\cdot{}x^{i}[/mm]  mit n = 2k
>  
> Fall 1: [mm]a_n>0.[/mm]  Dann: [mm]P(x) \to \infty[/mm]  für [mm]x \to \pm \infty[/mm].
> (Warum ?)  . Also ex. ein R>0 mit:

Weil der Grad der Funktion gerade ist und an > 0.  

> P(x)>|P(0)|   für jedes x mit |x|>R.
>  
> Weiter ex. ein [mm]x_0 \in[/mm] [-R,R]  mit :
>  
> (1) [mm]P(x_0) \le[/mm] P(x)  für jedes x [mm]\in[/mm] [-R,R]
>  
> Warum ??.

Weil P(x) > |P(0)| für jedes |x| > R und P(x) -> [mm] \infty. [/mm]  

> Also auch  [mm]P(x_0) \le[/mm] P(0).
>  
> Wir haben dann
>  
> (2)  [mm]P(x_0) \le[/mm] P(0) [mm]\le[/mm] |P(0)| <P(x)   für jedes x mit
> |x|>R.
>  
> Aus (1) und (2) folgt: P nimmt in [mm]x_0[/mm] sein absolutes
> Minimum an.
>  
> Fall 2: [mm]a_n<0.[/mm] Jetzt Du ! (Du kannst Dir das Leben
> vereinfachen, wenn Du zu -P übergehst)
>  
> FRED  

Fall 2: Sei [mm] a_{n} [/mm] < 0 mit Polynom [mm] P_{2}(x) [/mm] = -P(x). Dann:
-P(x) -> - [mm] \infty [/mm] für x -> [mm] \infty. [/mm]
[mm] \Rightarrow \exists [/mm] R > 0: -P(x) < - P(0) für jedes |x| > R.

Weiter ex. ein [mm] x_{0} \in [/mm] [-R,R] mit:
(1) [mm] -P(x_{0}) \ge [/mm] -P(x) [mm] \forall [/mm] x [mm] \in [/mm] [-R, R]
[mm] \Rightarrow -P(x_{0}) \ge [/mm] -P(0)

(2) -P(x) < -P(0) [mm] \le -P(x_{0}) [/mm] für jedes x mit |x| > R.

Aus (1) und (2) folgt: -P(x) [mm] \le -P(x_{0}) \Rightarrow P_{2}(x) \le P_{2}(x_{0}) [/mm]
[mm] \Rightarrow [/mm] P nimmt in [mm] x_{0} [/mm] absolutes Maximum an.

Stimmt das so?

LG Loriot95

Bezug
                        
Bezug
Extrema Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Do 17.03.2011
Autor: fred97


> Vielen Dank für deine Hilfe.
>  
> > Du brauchst keine Ableitung.
>  >  
> > Sei [mm]P(x) = \summe_{i=0}^{n} a_{i}\cdot{}x^{i}[/mm]  mit n = 2k
>  >  
> > Fall 1: [mm]a_n>0.[/mm]  Dann: [mm]P(x) \to \infty[/mm]  für [mm]x \to \pm \infty[/mm].
> > (Warum ?)  . Also ex. ein R>0 mit:
>  Weil der Grad der Funktion gerade ist und an > 0.  

Ja


> > P(x)>|P(0)|   für jedes x mit |x|>R.
>  >  
> > Weiter ex. ein [mm]x_0 \in[/mm] [-R,R]  mit :
>  >  
> > (1) [mm]P(x_0) \le[/mm] P(x)  für jedes x [mm]\in[/mm] [-R,R]
>  >  
> > Warum ??.
>  Weil P(x) > |P(0)| für jedes |x| > R und P(x) -> [mm]\infty.[/mm]  

Unfug! Nachdenken !  Weil P stetig auf [-R,R] ist !!!   Stetige Funktionen nehmen auf kompakten Menge ihr Min. und ihr Max. an.




> > Also auch  [mm]P(x_0) \le[/mm] P(0).
>  >  
> > Wir haben dann
>  >  
> > (2)  [mm]P(x_0) \le[/mm] P(0) [mm]\le[/mm] |P(0)| <P(x)   für jedes x mit
> > |x|>R.
>  >  
> > Aus (1) und (2) folgt: P nimmt in [mm]x_0[/mm] sein absolutes
> > Minimum an.
>  >  
> > Fall 2: [mm]a_n<0.[/mm] Jetzt Du ! (Du kannst Dir das Leben
> > vereinfachen, wenn Du zu -P übergehst)
>  >  
> > FRED  
>
> Fall 2: Sei [mm]a_{n}[/mm] < 0 mit Polynom [mm]P_{2}(x)[/mm] = -P(x). Dann:
>  -P(x) -> - [mm]\infty[/mm] für x -> [mm]\infty.[/mm]

Nein: wen [mm] a_n<0 [/mm] ist, dann haben wir doch -P(x)= [mm] -a_nx^n [/mm] + ...    [mm] \to \infty [/mm] für x [mm] \to \pm \infty [/mm]



>  [mm]\Rightarrow \exists[/mm] R > 0: -P(x) < - P(0) für jedes |x| >

> R.
>  
> Weiter ex. ein [mm]x_{0} \in[/mm] [-R,R] mit:
>  (1) [mm]-P(x_{0}) \ge[/mm] -P(x) [mm]\forall[/mm] x [mm]\in[/mm] [-R, R]
>  [mm]\Rightarrow -P(x_{0}) \ge[/mm] -P(0)
>  
> (2) -P(x) < -P(0) [mm]\le -P(x_{0})[/mm] für jedes x mit |x| > R.
>  
> Aus (1) und (2) folgt: -P(x) [mm]\le -P(x_{0}) \Rightarrow P_{2}(x) \le P_{2}(x_{0})[/mm]
>  
> [mm]\Rightarrow[/mm] P nimmt in [mm]x_{0}[/mm] absolutes Maximum an.
>  
> Stimmt das so?

Nein, Du hast es komplett verdaddelt !!

Im Falle [mm] a_n<0, [/mm] setze Q:=-P. Dann ist der führende Koeefizient von Q    = [mm] -a_n>0. [/mm]

Nach Fall 1  gibt es ein [mm] x_0 \in \IR [/mm] mit  [mm] Q(x_0) \le [/mm] Q(x)  für alle x.

Dann: [mm] P(x_0) \ge [/mm] P(x)  für alle x.

FRED

>  
> LG Loriot95


Bezug
                                
Bezug
Extrema Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Do 17.03.2011
Autor: Loriot95

Oh man. Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de