www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Extrema e^3x*lnx
Extrema e^3x*lnx < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema e^3x*lnx: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:43 Sa 15.01.2005
Autor: Fry

Hallo !

Ich habe die Funktion f(x)= e^(3x) * lnx , D= (0, [mm] \infty). [/mm]
Ich soll nun beweisen, dass die Funktion zwei Extrema hat...

f´(x) = 3e^(3x)*lnx + e^(3x)*1/x
= e^(3x) [ 3lnx + 1/x ]

Die Nullstellen zu berechnen, schaffe ich nicht.
Gibt es noch eine andere Möglichkeit die Existenz der Extrema zu zeigen ?

Gruß
Fry


        
Bezug
Extrema e^3x*lnx: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Sa 15.01.2005
Autor: Paulus

Hallo Fry

> Hallo !
>  
> Ich habe die Funktion f(x)= e^(3x) * lnx , D= (0,
> [mm]\infty). [/mm]
>  Ich soll nun beweisen, dass die Funktion zwei Extrema
> hat...
>  
> f´(x) = 3e^(3x)*lnx + e^(3x)*1/x
>  = e^(3x) [ 3lnx + 1/x ]
>
> Die Nullstellen zu berechnen, schaffe ich nicht.
>  Gibt es noch eine andere Möglichkeit die Existenz der
> Extrema zu zeigen ?
>  
> Gruß

Ich würde mal in dieser Richtung etwas versuchen:

Du hast ja die Gleichung:

[mm] $e^{3x}(3\ln(x)+\bruch{1}{x})=0$ [/mm]

Weil [mm] $3^{3x}$ [/mm] sicher grösser als Null ist, darfst du dividieren:

[mm] $3\ln(x)+\bruch{1}{x}=0$ [/mm]
[mm] $3x\ln(x)+1=0$ [/mm]
[mm] $3x\ln(x)=-1$ [/mm]
[mm] $\ln(x^{3x})=-1$ [/mm]
[mm] $x^{3x}=\bruch{1}{e}$ [/mm]

Wenn du jetzt zeigen kannst, dass [mm] $x^{3x}$ [/mm] (für x>0) stetig ist, kannst du den Mittelwertsatz anwenden.

Weil ja [mm] $x^{3x}$ [/mm]

für x=0.1 etwa den Wert 0.5 ergibt,
für x=0.4 etwa den Wert 0.33 ergibt und
für x=1 den Wert 1 ergibt.

Mit $0.33 < [mm] \bruch{1}{e}< [/mm] 0.5$ folgt dann, dass zwischen x=0.1 und x=0.4 eine Nullstelle liegen muss, ebenfalls entsprechen eine Nullstelle zwischen 0.4 und 1.0.

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Extrema e^3x*lnx: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Sa 15.01.2005
Autor: Fry

Hallo Paul !

Vielen Dank für deine schnelle Antwort.
Die Idee mit dem Mittelwertsatz gefällt mir gut :)..
Danke nochmal !

Viele Grüße
Fry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de