www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Extrema einer Betragsfunktion
Extrema einer Betragsfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema einer Betragsfunktion: Zwei Aufgaben
Status: (Frage) beantwortet Status 
Datum: 22:39 Mi 14.12.2005
Autor: Commotus

Aufgabe 1
Untersuchen Sie die Funktion [mm] f(x)=abs(x^2-1)-1 [/mm] auf Extrema!

Aufgabe 2
Untersuchen Sie die Funktion f(x)=sqrt(abs(x))-1 auf Extrema!

Hallo,

meine Frage zur ersten Aufgabe ist folgende:
Wie bilde ich konkret die Ableitung dieser Funktion? Muss ich die Fälle [mm] x^2-1 [/mm] < 0, [mm] x^2-1 [/mm] > 0 und [mm] x^2-1=0 [/mm] unterscheiden und somit drei verschiedene Ableitungen bestimmen?

Wie leite ich die Funktion der zweiten Aufgabe ab?

Viele Grüße,
Commotus

        
Bezug
Extrema einer Betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Mi 14.12.2005
Autor: Leopold_Gast

Ich würde hier nicht stur mit Ableitungen rechnen, sondern geometrisch argumentieren:

[mm]y = x^2[/mm]
Zeichne die Normalparabel.

[mm]y = x^2 - 1[/mm]
Verschiebe die Normalparabel um 1 nach unten in [mm]y[/mm]-Richtung.

[mm]y = \left| x^2 - 1 \right|[/mm]
Spiegle den Teil der vorigen Kurve, der unterhalb der [mm]x[/mm]-Achse liegt, an dieser.

[mm]y = \left| x^2 - 1 \right| - 1[/mm]
Verschiebe die vorige Kurve um 1 nach unten in [mm]y[/mm]-Richtung.

Jetzt sollte die Lage der beiden Minima und des lokalen Maximums klar sein.

Jedem Problem die ihm angemessene Methode ...

Bezug
                
Bezug
Extrema einer Betragsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Do 15.12.2005
Autor: Commotus

Geometrische Interpretation hin oder her, ich sollte möglichst schon die Ableitungen bestimmen, um die Funktion auf Extrema zu untersuchen. Dennoch vielen Dank.

Bezug
                        
Bezug
Extrema einer Betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Do 15.12.2005
Autor: Leopold_Gast

Wozu ableiten? Wenn man die geometrischen Prozesse verfolgt, ist klar, wo die Extrema entstehen.

Lokale (globale) Minima bei [mm]x = \pm 1[/mm] mit Wert [mm]y=-1[/mm], lokales Maximum bei [mm]x=0[/mm] mit Wert [mm]y=0[/mm].

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Extrema einer Betragsfunktion: Ja
Status: (Antwort) fertig Status 
Datum: 10:56 Do 15.12.2005
Autor: Dulu2000

Ja so wie oben beschrieben würde ich es auch machen und die Teilbereiche dann auf minimum und maximum untersuchen, wobei natürlich die grenzen der Bereiche auch ein extrema aufweisen können.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de