www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Extrema untersuchen
Extrema untersuchen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 20.02.2006
Autor: cueMath

Aufgabe
Untersuchen Sie die Fkt. f(x) = ( x * (1-x) [mm] )^1/2 [/mm] für x E [0 ; 1 ] auf lokale Extrema.

Hallo,

ich habe bereits einen Ansatz versucht, bin aber auf eine Frage gestoßen an der ich nicht weiter komme.

- die erste Ableitung ist 1 -2x / 2 [mm] (x-x^2)^1/2 [/mm]   (richtig?)
- die NST sollte demnach 1 sein.

- die 2. Ableitung ist: (  2 / [mm] (x-x^2)^1/2 [/mm]  ) -  (  [mm] ((1-2x)^2) [/mm] / [mm] 2(1-2x)^2/3 [/mm] )
  da bin ich mir allerdings nicht sicher...weil wenn ich beim ersten bruch die NST 1 einsetze müsste ich durch 0 teilen... das wäre doch nicht definiert oder?

Wäre dankbar für einen Tipp bzw. für Berichtigungen.

Vielen Dank um Voraus.

        
Bezug
Extrema untersuchen: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:49 Mo 20.02.2006
Autor: Roadrunner

Hallo cueMath!


> - die erste Ableitung ist 1 -2x / 2 [mm](x-x^2)^1/2[/mm]  
> (richtig?)

Wenn Du hier meinst: $f'(x) \ = \ [mm] \bruch{1-2x}{\wurzel{x-x^2}}$ [/mm]  [ok]


> - die NST sollte demnach 1 sein.

[notok] Die Nullstelle der 1. Ableitung ergibt sich doch aus $1-2x \ = \ 0$.
Da erhalte ich einen anderen $x_$-Wert!


  

> - die 2. Ableitung ist: (  2 / [mm](x-x^2)^1/2[/mm]  ) -  (  
> [mm]((1-2x)^2)[/mm] / [mm]2(1-2x)^2/3[/mm] )
> da bin ich mir allerdings nicht sicher...

Diese 2. Ableitung stimmt nicht. Allein der Exponent im Nenner des 2. Bruches muss [mm] $\bruch{3}{2}$ [/mm] lauten.

Aber auch der Zähler des 1. Bruches ist falsch!


> beim ersten bruch die NST 1 einsetze müsste ich durch 0
> teilen... das wäre doch nicht definiert oder?

Das hat sich durch den anderen $x_$-Wert ja erledigt ... ;-)


Gruß vom
Roadrunner


Bezug
                
Bezug
Extrema untersuchen: tip
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Mo 20.02.2006
Autor: gamo77

Ausserdem den Deffinitionsbereich beachten!

fuer reelles y hier 0-1


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de