www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Extremabestimmung von e-Fkt.
Extremabestimmung von e-Fkt. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremabestimmung von e-Fkt.: Idee
Status: (Frage) beantwortet Status 
Datum: 07:08 Di 17.01.2006
Autor: DSR

Aufgabe
[mm] f'_a(x)=ae^{2x-2} -3ae^{x-1} -e^{x-1} [/mm] -1

Wie errechne ich die Extrema?(Wäre sehr hilfreich, wenn mir jemand einen tipp geben könnte)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremabestimmung von e-Fkt.: pq-Formel
Status: (Antwort) fertig Status 
Datum: 08:07 Di 17.01.2006
Autor: informix

Hallo DSR,
[willkommenmr]
Freust du dich auch über eine nette Anrede oder einen Gruß?


> [mm]f'_a(x)=ae^{2x-2} -3ae^{x-1} -e^{x-1}[/mm] -1
>  Wie errechne ich die Extrema?(Wäre sehr hilfreich, wenn
> mir jemand einen tipp geben könnte)

Ersetze mal [mm] $e^{x-1}$ [/mm] durch z - und schon sieht die Gleichung lösbar aus... ;-)

mit der MBpq-Formel

Gruß informix


Bezug
                
Bezug
Extremabestimmung von e-Fkt.: eventuelle folgerung daraus
Status: (Frage) beantwortet Status 
Datum: 10:28 Di 17.01.2006
Autor: DSR

Aufgabe
[mm] f'_a(x)=ae^{2x-2}-3ae^{x-1}-1 [/mm]
[mm] z:=e^{x-1} [/mm]
=> f'_a(x)=az²-(3a+1)z-1

ey danke für den tipp! nur damit ich mich bestätigt fühle,möchte ich nun wissen,ob ich damit richtig liege: wenn ich die pq-formel anwende, dann muss ich doch für p 3a+1 einsetzen?!


Bezug
                        
Bezug
Extremabestimmung von e-Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Di 17.01.2006
Autor: Karl_Pech


> [mm]f'_a(x)=ae^{2x-2}-3ae^{x-1}-1[/mm]
>  [mm]z:=e^{x-1}[/mm]
>  => f'_a(x)=az²-(3a+1)z-1

>  ey danke für den tipp! nur damit ich mich bestätigt
> fühle,möchte ich nun wissen,ob ich damit richtig liege:
> wenn ich die pq-formel anwende, dann muss ich doch für p
> 3a+1 einsetzen?!


Wie kommst Du denn auf das [mm]3a+1[/mm]? Du hast doch schon beim quadratischen Term richtig ersetzt, warum also nicht hier?


Jedenfalls hast Du jetzt folgende Gleichung zu lösen:


[mm]az^2 - 3az - 1 = 0 \gdw z^2 - 3z - \frac{1}{a} = 0[/mm]


Anschließend setzt Du für jede Nullstelle wieder [mm]e^{x-1}[/mm] ein, und formst mit den Logarithmusgesetzen nach [mm]x[/mm] um.

Bezug
                                
Bezug
Extremabestimmung von e-Fkt.: sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:02 Di 17.01.2006
Autor: DSR

hab vergessen [mm] -e^{x-1} [/mm] zu schreiben...deswegen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de