www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Extrempunkte
Extrempunkte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrempunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Di 17.05.2005
Autor: Coli

hey ihr, ich weiß nicht wie ich diese aufgaben lösen kann... wir sollen angeben ob diese aussagen wahr oder falsch sind und auch begründen

1. wenn eine ganzrationale Funktion 3. Grades nur eine Nullstelle hat, dann hat sie keinen Extrempunkt
2.wenn eine ganzrationale Funktion 3. Grades 3 Nullstellen besitzt, dann hat sie zwei Extrempunkte
3. wenn f'(x0) = 0 gilt, dann ist x0 eine Extremstelle
4. wenn x0 eine Extremstelle ist, dann gilt f' (xo)=0

Wenn mir jemand helfen könnte wärs echt voll cool
danke schonmal im voraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extrempunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Di 17.05.2005
Autor: Bastiane

Hallo Coletta! (interessanter Name ;-))

[willkommenmr]

Hast du dir schon mal unsere Forenregeln durchgelesen? Da steht nämlich was von eigenen Ansätzen... Hast du überhaupt keine Ideen zu einer der Aufgaben?

> 1. wenn eine ganzrationale Funktion 3. Grades nur eine
> Nullstelle hat, dann hat sie keinen Extrempunkt

Ich dachte zuerst, diese Aussage wäre wahr, aber das ist Blödsinn! Du kannst hier z. B. die Funktion [mm] f(x)=x^3+x^2+1 [/mm] nehmen, die hat sowohl einen Hoch- als auch einen Tiefpunkt. :-)
Im Prinzip müsstest du hier aber (fast) jede ganzrationale Funktion 3. Grades nehmen können, bei der außer der 3. Potenz auch noch eine andere Potenz vorkommt (also [mm] x^3+1 [/mm] würde nicht reichen).
Und mit einem Gegenbeispiel hast du die Aussage widerlegt, was als Begründung reicht. :-)

>  2.wenn eine ganzrationale Funktion 3. Grades 3 Nullstellen
> besitzt, dann hat sie zwei Extrempunkte

Diese Aussage müsste wohl stimmen (die Umkehrung allerdings nicht...). Ich weiß nicht, wie man das mathematisch begründen kann, aber evtl. reicht es auch mit Worten. Stell dir solch eine Funktion mit drei Nullstellen mal vor. Die Funktion kommt ja bei einer Nullstelle entweder von unterhalb der x-Achse und geht dann oberhalb weiter oder umgekehrt. Im ersten Fall muss sie dann ja irgendwo wieder runter gehen, damit sie die x-Achse noch einmal (für die zweite Nullstelle) schneiden kann, und danach muss sie dann auch wieder irgendwann hochgehen, für die 3. Nullstelle. Und wenn sie ihr Verhalten von steigend zu fallend ändert, ist das genau das, was man mit Extremum bezeichnet.
Alles klar?

>  3. wenn f'(x0) = 0 gilt, dann ist x0 eine Extremstelle

Diese Aussage ist falsch. Man betrachte dafür die Funktion [mm] f(x)=x^3, [/mm] hier ist [mm] f'(x)=3x^2, [/mm] diese ist an der Stelle 0 =0 (also. f'(0)=0), da aber die zweite Ableitung (f''(x)=6x) an dieser Stelle auch =0 ist, und die dritte Ableitung [mm] \not= [/mm] 0, so liegt kein Extremum, sondern ein Wendepunkt vor. :-)

>  4. wenn x0 eine Extremstelle ist, dann gilt f' (xo)=0

Dies wiederum ist richtig! Wahrscheinlich weißt du, dass die Ableitung die Steigung einer Funktion angibt. Betrachte nun eine Funktion an ihrer Extremstelle - wie ist an dieser Stelle die Steigung? Genau, sie ist =0 und damit muss auch die Ableitung an dieser Stelle =0 sein. :-)
Anders weiß ich das im Moment nicht zu erklären...

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Extrempunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Di 17.05.2005
Autor: Coli

Hey Christiane,

ich möchte mich ganz doll für deine schnelle Antwort bedanken : ) ich habe wirklich verzweifelt an diesen aufgaben gesessen und kam einfach auf keinen vernünftigen gedanken... durch deine Erklärungen konnte ich mich gut in die aufgaben hineinversetzen und glaube, dass ich es wirklich verstanden habe!

Nochmal vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de