www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremstelle
Extremstelle < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Do 08.03.2007
Autor: die_Katja

Aufgabe
Skizziere zwei Funktionsgraphen,die an einer Stelle xe die notwendige Bedingung von Satz 1  erfüllen,aber an der Stelle xe denoch keine Extremstelle haben.Erkläre mit deinen Worten,warum an diesen Stellen keine Extremstelle vorliegt

(Satz1
Notwendiges Kriterium für relative Extremstellen
Die Funktion f sei an der Stelle xE dieffernzierbar
Wenn xE relative Extremstelle ist,dann gilt f´(xe)=0.)

Hallo,ich bin echt am verzweifeln weil ich die Aufgabe nicht verstehe.Ich hoffe ihr könnt mir helfen
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Do 08.03.2007
Autor: Bastiane

Hallo die_Katja!

> Skizziere zwei Funktionsgraphen,die an einer Stelle xe die
> notwendige Bedingung von Satz 1  erfüllen,aber an der
> Stelle xe denoch keine Extremstelle haben.Erkläre mit
> deinen Worten,warum an diesen Stellen keine Extremstelle
> vorliegt
>  
> (Satz1
> Notwendiges Kriterium für relative Extremstellen
>  Die Funktion f sei an der Stelle xE dieffernzierbar
>  Wenn xE relative Extremstelle ist,dann gilt f´(xe)=0.)
>  Hallo,ich bin echt am verzweifeln weil ich die Aufgabe
> nicht verstehe.Ich hoffe ihr könnt mir helfen

Das ist eigentlich nicht so schwierig. Der Satz besagt, dass die notwendige Bedingung für eine Extremstelle ist, dass die Ableitung dort =0 ist. Das heißt, wenn du einen beliebigen Graphen hast, und dir dort eine beliebige Extremstelle anguckst, ist die Ableitung dort auf jeden Fall =0. Das gilt immer!
Nun gilt die Umkehrung aber nicht, das heißt, nicht jede Stelle, an der die Ableitung =0 ist, ist auch eine Extremstelle. Und genau dafür sollst du ein Beispiel finden.

Tipp: probier's mal mit der Funktion [mm] f(x)=x^3. [/mm] Aber die Erklärung dazu musst du noch selber finden. ;-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de