www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Extremstellen
Extremstellen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Sa 06.06.2009
Autor: matherein

Aufgabe
Gegeben ist die Funktion f mit f(x) = [mm] sin(2\wurzel{x}+1)+1. [/mm]
c)Berechnen Sie die Extremstellen für 0 [mm] \le [/mm] x [mm] \le [/mm] 4 exakt.

Guten Abend,

im Lösungsbuch steht: [mm] x_{0} [/mm] = [mm] \bruch{(\pi-2)²}{16} [/mm] und [mm] x_{1} [/mm] = [mm] \bruch{(3\pi-2)²}{16}. [/mm]

Wie komme ich auf diese beiden Brüche?

Mit freundlichem Gruß
matherein

        
Bezug
Extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Sa 06.06.2009
Autor: MathePower

Hallo matherein,

> Gegeben ist die Funktion f mit f(x) =
> [mm]sin(2\wurzel{x}+1)+1.[/mm]
>  c)Berechnen Sie die Extremstellen für 0 [mm]\le[/mm] x [mm]\le[/mm] 4
> exakt.
>  Guten Abend,
>  
> im Lösungsbuch steht: [mm]x_{0}[/mm] = [mm]\bruch{(\pi-2)²}{16}[/mm] und
> [mm]x_{1}[/mm] = [mm]\bruch{(3\pi-2)²}{16}.[/mm]
>  
> Wie komme ich auf diese beiden Brüche?


In dem man die Gleichung [mm]f'\left(x\right)=0[/mm] für [mm]0\le x \le 4[/mm] löst.


>  
> Mit freundlichem Gruß
>  matherein


Gruß
MathePower

Bezug
                
Bezug
Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 So 07.06.2009
Autor: matherein

Hallo MathePower,

die Bedingung für Extremstellen kenne ich auch.
Welche x-Werte muss ich denn genau in die Gleichung
[mm] x_{k}= \bruch{1}{4}*(\bruch{\pi}{2}+k\pi-1)² [/mm] einsetzen, etwa 0 und 4? Und was muss ich dann als k einsetzen?

Bitte um Hilfe,
matherein

Bezug
                        
Bezug
Extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 So 07.06.2009
Autor: Arcesius

Hallo

> Hallo MathePower,
>  
> die Bedingung für Extremstellen kenne ich auch.
> Welche x-Werte muss ich denn genau in die Gleichung
>  [mm]x_{k}= \bruch{1}{4}*(\bruch{\pi}{2}+k\pi-1)²[/mm] einsetzen,
> etwa 0 und 4? Und was muss ich dann als k einsetzen?
>  

Was ist das denn für eine Gleichung? Wie du selbst sehen kannst, ist in dieser Gleichung kein x frei, für welches du irgendwas einsetzen müsstest...
Berechne einfach die Ableitung deiner Funktion und suche die x, für die der Ausdruck 0 wird.. Dann hast du die x-werte deiner Extremalstellen. (Such nur im Intervall [0,4]).

> Bitte um Hilfe,
>  matherein

Grüsse

Bezug
                                
Bezug
Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 So 07.06.2009
Autor: matherein

Hallo Arcesius,

also die Ableitung gleich null gesetzt ist 0 = [mm] cos(2\wurzel{x}+1)*\bruch{1}{\wurzel{x}} [/mm]
Ich weiß nicht, wie ich da auf die beiden Brüche [mm] x_{0} [/mm] = [mm] \bruch{(\pi-2)²}{16} [/mm] und [mm] \bruch{(3\pi-2)²}{16} [/mm] kommen soll!
Was ist der nächste Rechenschritt bei dieser Gleichung?

matherein

Bezug
                                        
Bezug
Extremstellen: Nullstellen der Cosinus-Fkt.
Status: (Antwort) fertig Status 
Datum: 13:27 So 07.06.2009
Autor: Loddar

Hallo matherein!


Bedenke, dass die Cosinus-Funktion folgende Nullstellen besitzt:
[mm] $$x_{N,k} [/mm] \ = \ [mm] \bruch{2*k-1}{2}*\pi [/mm] \ = \ [mm] \pm\bruch{\pi}{2};\pm\bruch{3\pi}{2}; [/mm] ...$$
Es gilt also z.B. bei Deiner Aufgabe:
[mm] $$2*\wurzel{x}+1 [/mm] \ = \ \ [mm] \bruch{\pi}{2}$$ [/mm]
Nun nach $x \ = \ ...$ umformen.


Gruß
Loddar


Bezug
                                                
Bezug
Extremstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 So 07.06.2009
Autor: matherein

Guten Abend Loddar,

Jetzt habe ich endlich die Rechnung nachvollziehen können! Vielen Dank dafür

Schönen Abend noch.
matherein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de