www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert
Extremwert < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert: Frage+Idee
Status: (Frage) beantwortet Status 
Datum: 14:55 So 15.01.2006
Autor: Hamburg87

Hallo,
Ich hab so eine Aufgabe das erste mal bekommen und brache dringend Hilfe, hoffentlich kann einer mir helfen.

Gegeben ist die Funktionenschar
[mm] f_{k}:x \mapsto \bruch{1}{3} [/mm] x³ - 4k² [mm] \* [/mm] x + [mm] \bruch{16}{3} [/mm] k ; x [mm] \in \IR [/mm] und k [mm] \in [/mm] ]0;1[.

1.Bestimmen Sie die Koordinaten der Tief—und Hochpunkte sowie der Wendepunkte der den Funktionen zugeordneten Graphen Gk.

2.Es sei nun speziell k= 0,75.
    a) Berechnen Sie die Funktionswerte an den Stellen —2; —1; 1        und      2. Zeichnen Sie den Graphen [mm] G_{0,75} [/mm]     im Bereich -2  [mm] \le [/mm] x  [mm] \le [/mm] 2.
    b) Zeigen Sie, dass für [mm] k_{1} \not= k_{2} [/mm] die Graphen [mm] Gk_{1} [/mm] und [mm] Gk_{2} [/mm] genau einen Punkt gemeinsam haben.
3.a) Berechnen Sie die Flächenmaßzahlen A(k) der Flächenstücke, die von Gk, den Koordinatenachsen und der Parallelen zur y—Achse durch den jeweiligen Tiefpunkt von Gk begrenzt werden.
(Ergebnis: A(k) = [mm] \bruch{4}{3} [/mm] k²(8-5k²))
b) Für welche Werte von k ist A(k) maximal?
4. Auf welcher Kurve liegt die Menge aller Tiefpunkte der Graphen Gk?

----------------------------------------------------------------------------
ich hab versucht die Aufgabe zu lösen aber ich kann jetzt nicht mehr weiter, kann einer die Aufgabe lösen .

[mm] \bruch{1}{3}x³- [/mm] 4k² [mm] x_{1}+ \bruch{16}{3}k_{1} [/mm] = [mm] \bruch{1}{3}x³-4k²_{2} [/mm] x+ [mm] \bruch{16}{3}k_{2} [/mm]
[mm] \gdw [/mm] - 4k² x+ 4k²_{2}x + [mm] \bruch{16}{13} k_{1}- \bruch{16}{3}k k_{2}=0 [/mm]
[mm] \gdw 4x(-k²_{1}+k²_{2})+\bruch{16}{3}(k_{1}+k_{2})=0 [/mm]

[mm] \gdw x=-\bruch{16}{3}(k_{1}-k_{2}) [/mm] /[ [mm] 4(-k^{2}_{1}+k²_{2}) [/mm]                    

[mm] \gdw [/mm] x= [mm] -\bruch{4}{3} \* \bruch{k_{1}- k_{2}}{-k²_{1}+k²_{2}} [/mm]

[mm] \gdw [/mm]  x= [mm] -\bruch{4}{3} \* \bruch{k_{1}- k_{2}}{-1(k²_{1}+k²_{2})} [/mm]  

[mm] \gdw [/mm] x=  [mm] \bruch{4}{3} \* \bruch{k_{1}- k_{2}}{k²_{1}+k²_{2}} [/mm] = [mm] \bruch{4}{3} \bruch{1}{k_{1}+k_{2}} [/mm]  

  [mm] \gdw (k_{1}+k_{2}) \* [/mm] x = [mm] \bruch{4}{3} \gdw (k_{1}+k_{2}) \* [/mm] x [mm] -\bruch{4}{3}=0 \bruch{4}{3} [/mm] Nullstelle einer Lineare Funktion

y=mx+q
keine Nullstelle : m = 0 [mm] \wedge [/mm] q  [mm] \not= [/mm] 0
undend viele Nullstellen  : m = 0 [mm] \wedge [/mm] q=0
genau eine Nullstelle : sonst.






        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 So 15.01.2006
Autor: mathmetzsch

Hallo,

> Hallo,
>  Ich hab so eine Aufgabe das erste mal bekommen und brache
> dringend Hilfe, hoffentlich kann einer mir helfen.
>
> Gegeben ist die Funktionenschar
>  [mm]f_{k}:x \mapsto \bruch{1}{3}[/mm] x³ - 4k² [mm]\*[/mm] x +
> [mm]\bruch{16}{3}[/mm] k ; x [mm]\in \IR[/mm] und k [mm]\in[/mm] ]0;1[.
>  
> 1.Bestimmen Sie die Koordinaten der Tief—und Hochpunkte
> sowie der Wendepunkte der den Funktionen zugeordneten
> Graphen Gk.

Dazu die Funktion ableiten und =0 setzen. Die Ableitungen sind:

[mm] f_{k}'(x)=x^{2}-4k^{2} [/mm]
f''(x)=2x
f'''(x)=2.

>  
> 2.Es sei nun speziell k= 0,75.
>      a) Berechnen Sie die Funktionswerte an den Stellen —2;
> —1; 1        und      

[mm] f_{0,75}(2) [/mm] und [mm] f_{0,75}(1) [/mm] und [mm] f_{0,75}(-2) [/mm] und [mm] f_{0,75}(-1) [/mm] berechnen, d.h. x einsetzen!

2. Zeichnen Sie den Graphen [mm]G_{0,75}[/mm]  

>    im Bereich -2  [mm]\le[/mm] x  [mm]\le[/mm] 2.

einfach!

>      b) Zeigen Sie, dass für [mm]k_{1} \not= k_{2}[/mm] die Graphen
> [mm]Gk_{1}[/mm] und [mm]Gk_{2}[/mm] genau einen Punkt gemeinsam haben.
>  3.a) Berechnen Sie die Flächenmaßzahlen A(k) der
> Flächenstücke, die von Gk, den Koordinatenachsen und der
> Parallelen zur y—Achse durch den jeweiligen Tiefpunkt von
> Gk begrenzt werden.
>  (Ergebnis: A(k) = [mm]\bruch{4}{3}[/mm] k²(8-5k²))

Stammfunktion in Abhängigkeit von k ausrechnen! Einfach. Es werden nur elementare Integrationsmethoden verwendet!


>  b) Für welche Werte von k ist A(k) maximal?

Extremwertaufgabe!

>  4. Auf welcher Kurve liegt die Menge aller Tiefpunkte der
> Graphen Gk?

Ortskurve der Extrema bestimmen!

>  
> ----------------------------------------------------------------------------
>  ich hab versucht die Aufgabe zu lösen aber ich kann jetzt
> nicht mehr weiter, kann einer die Aufgabe lösen .
>  
> [mm]\bruch{1}{3}x³-[/mm] 4k² [mm]x_{1}+ \bruch{16}{3}k_{1}[/mm] =
> [mm]\bruch{1}{3}x³-4k²_{2}[/mm] x+ [mm]\bruch{16}{3}k_{2}[/mm]
>   [mm]\gdw[/mm] - 4k² x+ 4k²_{2}x + [mm]\bruch{16}{13} k_{1}- \bruch{16}{3}k k_{2}=0[/mm]
>  
>  [mm]\gdw 4x(-k²_{1}+k²_{2})+\bruch{16}{3}(k_{1}+k_{2})=0[/mm]
>  
> [mm]\gdw x=-\bruch{16}{3}(k_{1}-k_{2})[/mm] /[ [mm]4(-k^{2}_{1}+k²_{2})[/mm]  
>                  
>
> [mm]\gdw[/mm] x= [mm]-\bruch{4}{3} \* \bruch{k_{1}- k_{2}}{-k²_{1}+k²_{2}}[/mm]
>  
> [mm]\gdw[/mm]  x= [mm]-\bruch{4}{3} \* \bruch{k_{1}- k_{2}}{-1(k²_{1}+k²_{2})}[/mm]
>  
>
> [mm]\gdw[/mm] x=  [mm]\bruch{4}{3} \* \bruch{k_{1}- k_{2}}{k²_{1}+k²_{2}}[/mm]
> = [mm]\bruch{4}{3} \bruch{1}{k_{1}+k_{2}}[/mm]  
>
> [mm]\gdw (k_{1}+k_{2}) \*[/mm] x = [mm]\bruch{4}{3} \gdw (k_{1}+k_{2}) \*[/mm]
> x [mm]-\bruch{4}{3}=0 \bruch{4}{3}[/mm] Nullstelle einer
> Lineare Funktion
>  
> y=mx+q
>  keine Nullstelle : m = 0 [mm]\wedge[/mm] q  [mm]\not=[/mm] 0
>  undend viele Nullstellen  : m = 0 [mm]\wedge[/mm] q=0
>  genau eine Nullstelle : sonst.
>  

Also, dein Weg ist genau der Richtige. Beim Ausklammern von -1 hast du dann bei [mm] k_{2} [/mm] ein falsches Vorzeichen. Weiter kannst du mit 3. bin. Formel im Zähler umformen und dann einmal [mm] (k_{1}-k_{2}) [/mm] kürzen. Dein x hast du ja nun schon fast. Dann einsetzen und einen zugehörigen Funktionswert ausrechnen und damit hast du einen Punkt gefunden, den beide Kurven geminsam haben!


Viele Grüße
Daniel

>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de