www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert Aufgabe!
Extremwert Aufgabe! < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert Aufgabe!: Bitte hilfe für Ansatz! IDEE
Status: (Frage) beantwortet Status 
Datum: 21:18 Mi 18.05.2005
Autor: mmlug

Hello Freunde,

Aufgabe :
Das Volumen einer zylindrische Saftdose beträgt [mm] 200cm^2 [/mm] . Die Deckflächen der Dose sind aus Pappe, während doe Mantelfläche aus Metall besteht. Wie muss man die Abmessungen wählen, damit bei dem vorgegebenen Volumen die Herstellungskosten minal werden? Der Preis des Matalls ist dopplet so hoch wie der Pappe.

Ich habe für diese Aufgabe leider noch Löusngen und IDEE.
BItte , könnt ihr die Lösungwege und IDee geben?

Ich freue mich sher auf Ihre baldige Antwort.


LB Gruß,
mmlug

        
Bezug
Extremwert Aufgabe!: Hilfe
Status: (Antwort) fertig Status 
Datum: 21:50 Mi 18.05.2005
Autor: Zwerglein

Hi, mmlug,

Der Preis der Dose hängt also von der Oberfläche ab.
Rechnen wir also diese "gestückelt" aus.

Zunächst Deckel + Boden:

[mm] O_{1} [/mm] = [mm] 2*r^{2}*\pi. [/mm]

Dann der Mantel:

[mm] O_{2} [/mm] = [mm] 2*r*\pi*h. [/mm]

Nun müssen wir einen Zusammenhang zwischen r und h finden, um eine der beiden Variablen durch die andere auszudrücken. Dazu benutzen wir die Tatsache, dass das Volumen konstant sein soll:

V = [mm] r^{2}*\pi*h [/mm] = 200    (übrigens: Tippfehler in der Angabe; muss natürlich [mm] cm^{3} [/mm] heißen!)

Am besten löst man nach h auf:

h = [mm] \bruch{200}{r^{2}*\pi} [/mm]

Nun kommt der Material-Preis ins Spiel. Die Angabe ist vermutlich so zu interpretieren, dass der Preis des Metalls pro Flächeneinheit doppelt so hoch ist wie der der Pappe (was mir immer noch zu wenig erscheint; aber naja!).

Daher: (P steht hier für "Preis")

P(r) = [mm] 2*r^{2}*\pi [/mm] + 2* [mm] 2r*\pi*\bruch{200}{r^{2}*\pi} [/mm]

Umgeformt:

P(r) = [mm] 2*r^{2}*\pi [/mm] + [mm] \bruch{800}{r} [/mm]    (natürlich gilt: r > 0)

Weiter geht's so:

Ableitung P'(r) bilden;

diese Ableitung = 0 setzen (kommt r [mm] \approx [/mm] 4 raus),

begründen, dass ein absolutes Minimum vorliegt.

Fragen dazu?




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de