www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert Teil 2
Extremwert Teil 2 < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert Teil 2: Minimale Oberfläche gesucht
Status: (Frage) beantwortet Status 
Datum: 19:12 So 12.05.2013
Autor: Sancezz

Aufgabe
Ein Maschinenteil besteht aus einem quaderförmigen Grundkörper
mit einem zylindrischen Zapfen. Das Gesamtvolumen beträgt [mm] 20cm^3. [/mm]
Der Zapfendurchmesser d soll halb so groß wie die Kantenlänge a sein.
Da eine teure Oberflächenbehandlung erforderlich ist, soll die Oberfläche möglichst klein sein.
Wie sind die Maße a, b und d  für die minimale
Oberfläche zu wählen?

HB: O (a,b,d) =  /pi * r² + 2 * /pi * r * h + 2*a²  - /pi*r² + 4*a*b

NB: V = a² * b + /pi * r² *b/2 = 20cm³


Bin ich soweit schonmal auf den richtigen Weg?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Extremwert Teil 2: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 So 12.05.2013
Autor: abakus


> Ein Maschinenteil besteht aus einem quaderförmigen
> Grundkörper
> mit einem zylindrischen Zapfen. Das Gesamtvolumen
> beträgt [mm]20cm^3.[/mm]
> Der Zapfendurchmesser d soll halb so groß wie die
> Kantenlänge a sein.

Hallo,
was ist "die Kantenlänge a"?
Hast du eventuell verschwiegen, dass der Quader eine quadratische Grundfläche mit der Seitenlänge a haben soll? Darauf deutet zumindest der erste Summand deiner Nebenbedingung hin. Im zweiten Summanden benennst du aber plötzlich mit "b/2", was nach deinem Aufgabentext eigentlich a/2 sein sollte.

Bitte überarbeite die Aufgabenstellung so, dass sie für potenzielle Helfer klar ist.


Gruß Abakus
 

> Da eine teure Oberflächenbehandlung erforderlich ist,
> soll die Oberfläche möglichst klein sein.
> Wie sind die Maße a, b und d für die minimale
> Oberfläche zu wählen?
> HB: O (a,b,d) = /pi * r² + 2 * /pi * r * h + 2*a² -
> /pi*r² + 4*a*b

>

> NB: V = a² * b + /pi * r² *b/2 = 20cm³

>
>

> Bin ich soweit schonmal auf den richtigen Weg?


Bezug
                
Bezug
Extremwert Teil 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 So 12.05.2013
Autor: Sancezz

Hallo, habe ein Zeichnung zur Verdeutlichung mit eingefügt. Ja Quader hat eine Grundseite von a*a.  b/2 ist die länge des Zylindrischen Zapfens und b ist die Gesamte Länge von Quader & Zapfen.

Bezug
                        
Bezug
Extremwert Teil 2: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 So 12.05.2013
Autor: M.Rex

Hallo
> Hallo, habe ein Zeichnung zur Verdeutlichung mit
> eingefügt. Ja Quader hat eine Grundseite von a*a. b/2 ist
> die länge des Zylindrischen Zapfens und b ist die Gesamte
> Länge von Quader & Zapfen.

Dann gibt es für das Volumen zwei Varianten:

Variante 1:

[mm] V=a^2\cdot\frac{b}{2}+\pi\cdot\left(\frac{d}{2}\right)^{2}\cdot\frac{b}{2} [/mm]


Variante 2:

[mm] V=a^2\cdot b-\pi\cdot\left(\frac{d}{2}\right)^{2}\cdot\frac{b}{2} [/mm]

Hierbei wird der Zylinder aus der "langen quadratischen Säule ausgeschnitten
Beide sind mit leichten Umformungen ineinander überführbar.


Für die Oberfläche kannst du die Oberfläche der Säule berechnen, und dazu die Mantelfläche des Zylinders.
Den "Boden" des Zylinders kannst du weglassen, da du diesen ja auch von der Säulenoberfläche subtrahieren  müsstest, denn dort fehlt genau dieser Zylinderboden.

Also hast du:
[mm] $O=2\cdot a^{2}+4\cdot a\cdot\frac{b}{2}+2\cdot\pi\cdot\left(\frac{d}{2}\right)\cdot\frac{b}{2} [/mm]

Vereinfache die Formeln nun noch, erstetze [mm] d=\frac{a}{2} [/mm]

Danach kannst du mit der üblichen Berechnung solcher Extremwertaufgaben beginnen, also:
-Umformung der Nebenbed.
-Einsetzen in die Hauptbed, also die zu optimierende Größe
-Vereinfachen dieses Terms zur Zielfunktion
-Die Extrempunkte der Zielfunktion bestimmen
....

Marius

Bezug
                                
Bezug
Extremwert Teil 2: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 20:09 So 12.05.2013
Autor: abakus


> Hallo
> > Hallo, habe ein Zeichnung zur Verdeutlichung mit
> > eingefügt. Ja Quader hat eine Grundseite von a*a. b/2
> ist
> > die länge des Zylindrischen Zapfens und b ist die
> Gesamte
> > Länge von Quader & Zapfen.

>

> Dann gibt es für das Volumen zwei Varianten:

>

> Variante 1:

>

> [mm]V=a^2\cdot\frac{b}{2}+\pi\cdot\left(\frac{d}{2}\right)^{2}\cdot\frac{b}{2}[/mm]

>
>

> Variante 2:

>

> [mm]V=a^2\cdot b-\pi\cdot\left(\frac{d}{2}\right)^{2}\cdot\frac{b}{2}[/mm]

Hallo,
Variante 2 stimmt aber nicht. Da ist nicht der zylindrische Zapfen dran. Das hat dort ein Loch, wo dieser Zapfen sein sollte.
Gruß Abakus
>

> Hierbei wird der Zylinder aus der "langen quadratischen
> Säule ausgeschnitten
> Beide sind mit leichten Umformungen ineinander
> überführbar.

>

> Für die Oberfläche kannst du die Oberfläche der Säule
> berechnen, und dazu die Mantelfläche des Zylinders.
> Den "Boden" des Zylinders kannst du weglassen, da du
> diesen ja auch von der Säulenoberfläche subtrahieren 
> müsstest, denn dort fehlt genau dieser Zylinderboden.

>

> Also hast du:
> [mm]O=2\cdot a^{2}+4\cdot a\cdot\frac{b}{2}+2\cdot\pi\cdot\left(\frac{d}{2}\right)\cdot\frac{b}{2}[/mm]

>

> Vereinfache die Formeln nun noch, erstetze [mm]d=\frac{a}{2}[/mm]

>

> Danach kannst du mit der üblichen Berechnung solcher
> Extremwertaufgaben beginnen, also:
> -Umformung der Nebenbed.
> -Einsetzen in die Hauptbed, also die zu optimierende
> Größe
> -Vereinfachen dieses Terms zur Zielfunktion
> -Die Extrempunkte der Zielfunktion bestimmen
> ....

>

> Marius


Bezug
                                        
Bezug
Extremwert Teil 2: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 00:23 Mo 13.05.2013
Autor: M.Rex


> >
> > Variante 2:
> >
> > [mm]V=a^2\cdot b-\pi\cdot\left(\frac{d}{2}\right)^{2}\cdot\frac{b}{2}[/mm]

>

> Hallo,
> Variante 2 stimmt aber nicht. Da ist nicht der
> zylindrische Zapfen dran. Das hat dort ein Loch, wo dieser
> Zapfen sein sollte.
> Gruß Abakus


Hallo Abakus.

Du hast recht, ich streiche das sofort.

Danke.
Marius

Bezug
                                
Bezug
Extremwert Teil 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 So 12.05.2013
Autor: Sancezz

also V= a² * b/2 + [mm] \pi [/mm] * (a/2//2) * b/2 = 20cm3


Nach welcher Variabel sollte man nun umstellen ?!

Bezug
                                        
Bezug
Extremwert Teil 2: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 So 12.05.2013
Autor: leduart

hallo
Nimm einfach die, nach deßr du einfacher aufloesen kannst.
Gruss. Leduart

Bezug
                                                
Bezug
Extremwert Teil 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:56 So 12.05.2013
Autor: Sancezz

Für mich ist das nicht mehr plausibel.. ich steh aufm Schlauch..

Bezug
                                                        
Bezug
Extremwert Teil 2: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Mo 13.05.2013
Autor: M.Rex


> Für mich ist das nicht mehr plausibel.. ich steh aufm
> Schlauch..

Löse doch die Nebenbedingung nach einer Variablen auf, und ersetze damit die Variable in der Hauptbedingung, dann hast dz deine Zielfunktion.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 6h 48m 2. leduart
Transformationen/Faltung zeichnerisch lösen
Status vor 10h 04m 4. Fulla
Mengenlehre/Mengenlehre
Status vor 17h 01m 3. matux MR Agent
SStoc/Münze
Status vor 17h 03m 2. angela.h.b.
SLinGS/Lösungsverhalten LGS
Status vor 22h 20m 2. fred97
UAnaRn/Satz Implizite Funktion System
^ Seitenanfang ^
www.vorhilfe.de