www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mo 20.09.2004
Autor: Itchy

Also, wir haben folgende Aufgabe als Hausaufgabe aufbekommen:

Ein Kessel besteht aus einer Halbkugel mit aufgesetztem Zylindermantel.
Wie sind seine Maße zu wählen, damit er mit Deckel bei gegebener Oberfläche O ein möglichst großes Volumen hat?


Die Extremalbedingung sieht schätze ich mal so aus:
V= [mm] \bruch{\bruch{4}{3} \pi r^3}{2}+G*h [/mm]

Da man ja praktisch nur die Halbkugel mit dem Zylinder addieren muss (die Formeln für die Formen habe ich von meiner Formelsammlung) und anschließend Ableiten, damit man die Nullstellen und nachher  einen Hochpunkt berechnen kann.
So, jetzt scheitere ich aber bei der Suche nach einer Nebenbedingung.
Wäre schön wenn mir jemand die Lösung erklären könnte.

Vielen dank schonmal!

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 20.09.2004
Autor: informix

Hallo Itchy,
> Also, wir haben folgende Aufgabe als Hausaufgabe
> aufbekommen:
>  
> Ein Kessel besteht aus einer Halbkugel mit aufgesetztem
> Zylindermantel.
>  Wie sind seine Maße zu wählen, damit er mit Deckel bei
> gegebener Oberfläche O ein möglichst großes Volumen hat?
>  
>
> Die Extremalbedingung sieht schätze ich mal so aus:
>  V= [mm]\bruch{\bruch{4}{3} \pi r^3}{2}+G*h [/mm]

[ok]
Beachte, dass $G$ ebenfalls von $r$ abhängt; das solltest du gleich in die Formel hinein nehmen.

> Da man ja praktisch nur die Halbkugel mit dem Zylinder
> addieren muss (die Formeln für die Formen habe ich von
> meiner Formelsammlung) und anschließend Ableiten, damit man
> die Nullstellen und nachher  einen Hochpunkt berechnen
> kann.
>  So, jetzt scheitere ich aber bei der Suche nach einer
> Nebenbedingung.
>  Wäre schön wenn mir jemand die Lösung erklären könnte.

Die Nebenbedingung steckt in der "gegebenen Oberfläche" $O$.
Beachte dabei, dass der Kessel auch einen Deckel hat, und stelle mal eine Formel für die Oberfläche auf.
Sie sollte ebenfalls von $r$ und $h$ abhängen und stellt dann die Nebenbedingung dar, ohne dass du eine genaue Zahl, sondern nur $O$ hast.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de