www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 29.09.2004
Autor: triple

Hallo,

hier nochmal eine Frage zu einer Aufgabe:

Gegeben ist ein Dreieck: a = 16 und b = 12

Gesucht ist ein Rechteck größter Fläche innerhalb des Dreiecks.

Mein Lösungsansatz wäre:
(16:2) x (12:2) = max. Fläche des Rechtecks. Aber das kann man bestimmt anders noch rechnen. Würde mich über Vorschläge freuen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Mi 29.09.2004
Autor: informix

Hallo triple,
>  
> hier nochmal eine Frage zu einer Aufgabe:
>  
> Gegeben ist ein Dreieck: a = 16 und b = 12
>  

Damit ist ein Dreieck nicht eindeutig festgelegt; hast du nicht noch eine Angabe?

> Gesucht ist ein Dreieck größter Fläche innerhalb des Dreiecks. [verwirrt]

>  
> Mein Lösungsansatz wäre:
>  (16:2) x (12:2) = max. Fläche des Rechtecks. Aber das kann
> man bestimmt anders noch rechnen. Würde mich über
> Vorschläge freuen!

Hier sprichst du plötzlich von einem Rechteck [verwirrt]
  


Bezug
                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Mi 29.09.2004
Autor: triple

Gesucht ist ein Rechteck größter Fläche innerhalb des Dreiecks.

Habe mich vorher ausversehen verschrieben, sorry bin die ganze Zeit am rechnen und da kam ich wohl durcheinander.

Hoffe nun ist die Aufgabe klar !

Bezug
        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Do 30.09.2004
Autor: Julius

Lieber Andy!

Du musst deine Aufgabe schon eindeutig formulieren, sonst können wir nur raten.

Ich nehme mal an, dass es sich um ein rechtwinkliges Dreieck handelt.

Sind dann $x$ und $y$ die Seiten des einbeschriebenen Rechtecks ($y$ sei parallel zu der Seite mit der Länge $16$, $y$ sei parallel zu der Seite mit der Länge $12$), dann ist die Funktion

(*) $A(x,y)=x [mm] \cdot [/mm] y$,

die den Flächeninhalt dieses Rechtecks in Abhängigkeit von $x$ und $y$ beschreibt, über die Menge der zulässigen Werte von $x$ und $y$ zu maximieren.

Mach die eine Skizze und schau dir die Figur mal genau an. Man sieht zwei parallele Strecken und daraus resultierend eine Strahlensatzfigur. Mit einem der beiden Strahlensätze erhalten wir die Beziehung:

[mm] $\frac{y}{16-x} [/mm] = [mm] \frac{12}{16}$, [/mm]

also:

(NB) $y =12 - [mm] \frac{3}{4} [/mm] x$.

Nun ist der Rest einfach: Du setzt die Nebenbedingung (NB) in (*) ein und erhältst eine Funktion $A(x) = [mm] \ldots$, [/mm] die nur noch von $x$ abhängt. Das Maximum dieser Funktion im Definitionsbereich $D=]0,16[$ (warum ist der so?) kannst du mit den üblichen analytischen Methoden bestimmen (Ableitung bilden, diese gleich $0$ setzen, Nullstelle der ersten Ableitung in die zweite Ableitung einsetzen, schauen, ob der Wert dort kleiner als $0$ ist, Ränder überprüfen).

Führe das jetzt bitte zu Ende und melde dich mit einem Ergebnis. Wir helfen dir dann weiter. :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de