Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:59 Do 10.02.2005 | Autor: | jeckham |
Hallo!
Bin im Mathe LK und brauche Hilfe zu zwei Aufgaben, am besten die Lösungswege, wär echt nett.
1) Für welchen Wert von t mit t >1 wird der Inhalt der Fläche, die der Graph der Funktion F(x)=(1-t)x²-tx und die X-Achse einschließen, minimal?
2) Der Graph der Funktion f(x)=-x³+36x schließt mit der X-Achse im 1.Quadranten eine Fläche ein. Aus dieser Fläche soll parallel zur Y-Achse ein Streifen der Breite 3 so ausgeschnitten werden, dass dessen Fläche möglichst groß ist. Ermittle die Glecihungen der beiden Randgeraden des Streifens.
Danke im Voraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:09 Do 10.02.2005 | Autor: | Zwerglein |
Hi, Hannipuu,
üblicherweise schickt man erst mal seinen Lösungsvorschlag mit und lässt sich dann erklären, ob er OK ist oder was man noch dran machen könnte!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:27 Do 10.02.2005 | Autor: | dominik |
> 1) Für welchen Wert von t mit t >1 wird der Inhalt der
> Fläche, die der Graph der Funktion F(x)=(1-t)x²-tx und die
> X-Achse einschließen, minimal?
[mm]f_t(x)=(1-t)x²-tx[/mm]
1. Nullstellen bestimmen:
[mm]f_t(x)=0 \gdw (1-t)x²-tx=0 \gdw x \left[(1-t)*x-t \right]=0 \Rightarrow x_1=0,x_2= \bruch{t}{1-t}[/mm]
2. Flächeninhalt:
[mm]A= \integral_{0}^{\bruch{t}{1-t}} {[(1-t)x^2-tx] dx}= -\bruch{1}{6}*\bruch{t^3}{(t-1)^2}=A(t)[/mm]
3. A(t) ableiten (Quotientenregel!) und gleich Null setzen:
[mm]A'(t)=-\bruch{1}{6}*\bruch{t^2*(t-3)}{(t-1)^3}[/mm]
[mm]A'(t)=0 \gdw -\bruch{1}{6}*\bruch{t^2*(t-3)}{(t-1)^3}=0 \gdw t^2*(t-3)=0[/mm]
(Ein Bruch ist gleich Null, wenn der Zähler Null ist)
[mm]\Rightarrow t=0 \vee t=3[/mm]
t=3 ist Lösung, da t > 0, und die Funktion lautet:
[mm]f(x)=-2x²-3x[/mm]
Kannst du die Zwischenergebnisse selber ausrechnen?
Viele Grüsse
dominik
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:08 Mo 14.02.2005 | Autor: | jeckham |
Wie kommst du beim Flächeninhalt auf diese Formel mit dem 1/6 vorne??
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:05 Di 15.02.2005 | Autor: | Loddar |
Guten Morgen jeckham!
Wir haben doch folgendes Integral zu lösen:
$A(t) \ = \ A \ = \ [mm] \integral_{0}^{\bruch{t}{1-t}} {[(1-t)x^2-tx] dx}$
[/mm]
Wenn Du die Stammfunktion bildest und Deine Grenzen einsetzt, erhältst Du nach dem Zusammenfassen den Faktor $- [mm] \bruch{1}{6}$ [/mm] ...
$A(t) \ = \ [mm] \integral_{0}^{\bruch{t}{1-t}} {[(1-t)x^2-tx] dx}$
[/mm]
$A(t) \ = \ [mm] \left[ \bruch{1-t}{3}*x^3 - \bruch{t}{2}*x^2\right]_0^{\bruch{t}{1-t}}$
[/mm]
$A(t) \ = \ [mm] \bruch{(1-t)}{3}*\bruch{t^3}{(1-t)^3} [/mm] - [mm] \bruch{t}{2}*\bruch{t^2}{(1-t)^2} [/mm] \ - \ 0$
$A(t) \ = \ [mm] \bruch{1}{3}*\bruch{t^3}{(1-t)^2} [/mm] - [mm] \bruch{1}{2}*\bruch{t^3}{(1-t)^2}$
[/mm]
$A(t) \ = \ [mm] -\bruch{1}{6}*\bruch{t^3}{(t-1)^2}$
[/mm]
Loddar
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:51 Do 10.02.2005 | Autor: | dominik |
[mm]f(x)=-x^3+36x=-x* \left( x^2-36 \right)=-x*(x+6)*(x-6)[/mm]
Nullstellen bei -6, 0, +6
Skizze: Die abgebildete Funktion hat die Gleichung [mm]f(x)= \bruch{1}{10} \left( -x^3+36x \right)[/mm], damit sie besser zu sehen ist ...
[Dateianhang nicht öffentlich]
Flächeninhalt des Streifens: untere unbekannte Grenze: a; obere Grenze: a+3, weil der Streifen die Breite 3 hat:
[mm]A=\integral_{a}^{a+3} {\left( 36x-x^3 \right) dx}=...=-3*a^3-\bruch{27}{2}*a^2+81*a+ \bruch{567}{4}=A(a)[/mm]
A(a) ableiten und gleich Null setzen:
[mm]A'(a)=-9*a^2-27*a+81[/mm]
[mm]A'(a)=0 \gdw -9*a^2-27*a+81=0 \gdw -a^2-3a+9=0[/mm]
[mm] \Rightarrow a_1= -\bruch{3}{2}*\left( \wurzel{5}+1 \right)<0! [/mm] ist nicht Lösung;
[mm]a_2= \bruch{3}{2}*\left( \wurzel{5}-1 \right)[/mm]
Die beiden Randgeraden des Streifens haben die Gleichung
[mm]x_1= \bruch{3}{2}*\left( \wurzel{5}-1 \right)[/mm]
[mm]x_2= \bruch{3}{2}*\left( \wurzel{5}-1 \right)+3=\bruch{3}{2}*\left( \wurzel{5}+1 \right)[/mm]
Viele Grüsse
dominik
Dateianhänge: Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
|
|
|
|