www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 19:59 Do 10.02.2005
Autor: jeckham

Hallo!
Bin im Mathe LK und brauche Hilfe zu zwei Aufgaben, am besten die Lösungswege, wär echt nett.
1) Für welchen Wert von t mit t >1 wird der Inhalt der Fläche, die der Graph der Funktion F(x)=(1-t)x²-tx und die X-Achse einschließen, minimal?

2) Der Graph der Funktion f(x)=-x³+36x schließt mit der X-Achse im 1.Quadranten eine Fläche ein. Aus dieser Fläche soll parallel zur Y-Achse ein Streifen der Breite 3 so ausgeschnitten werden, dass dessen Fläche möglichst groß ist. Ermittle die Glecihungen der beiden Randgeraden des Streifens.

Danke im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:09 Do 10.02.2005
Autor: Zwerglein

Hi, Hannipuu,

üblicherweise schickt man erst mal seinen Lösungsvorschlag mit und lässt sich dann erklären, ob er OK ist oder was man noch dran machen könnte!

mfG!
Zwerglein

Bezug
        
Bezug
Extremwertaufgabe: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 20:27 Do 10.02.2005
Autor: dominik


> 1) Für welchen Wert von t mit t >1 wird der Inhalt der
> Fläche, die der Graph der Funktion F(x)=(1-t)x²-tx und die
> X-Achse einschließen, minimal?

[mm]f_t(x)=(1-t)x²-tx[/mm]
1. Nullstellen bestimmen:
[mm]f_t(x)=0 \gdw (1-t)x²-tx=0 \gdw x \left[(1-t)*x-t \right]=0 \Rightarrow x_1=0,x_2= \bruch{t}{1-t}[/mm]

2. Flächeninhalt:
[mm]A= \integral_{0}^{\bruch{t}{1-t}} {[(1-t)x^2-tx] dx}= -\bruch{1}{6}*\bruch{t^3}{(t-1)^2}=A(t)[/mm]

3. A(t) ableiten (Quotientenregel!) und gleich Null setzen:
[mm]A'(t)=-\bruch{1}{6}*\bruch{t^2*(t-3)}{(t-1)^3}[/mm]
[mm]A'(t)=0 \gdw -\bruch{1}{6}*\bruch{t^2*(t-3)}{(t-1)^3}=0 \gdw t^2*(t-3)=0[/mm]
(Ein Bruch ist gleich Null, wenn der Zähler Null ist)
[mm]\Rightarrow t=0 \vee t=3[/mm]
t=3 ist Lösung, da t > 0, und die Funktion lautet:
[mm]f(x)=-2x²-3x[/mm]


Kannst du die Zwischenergebnisse selber ausrechnen?

Viele Grüsse
dominik


Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mo 14.02.2005
Autor: jeckham

Wie kommst du beim Flächeninhalt auf diese Formel mit dem 1/6 vorne??

Bezug
                        
Bezug
Extremwertaufgabe: Erläuterung
Status: (Antwort) fertig Status 
Datum: 09:05 Di 15.02.2005
Autor: Loddar

Guten Morgen jeckham!

Wir haben doch folgendes Integral zu lösen:

$A(t) \ = \ A \ = \ [mm] \integral_{0}^{\bruch{t}{1-t}} {[(1-t)x^2-tx] dx}$ [/mm]

Wenn Du die Stammfunktion bildest und Deine Grenzen einsetzt, erhältst Du nach dem Zusammenfassen den Faktor $- [mm] \bruch{1}{6}$ [/mm] ...


$A(t) \ = \ [mm] \integral_{0}^{\bruch{t}{1-t}} {[(1-t)x^2-tx] dx}$ [/mm]

$A(t) \ = \ [mm] \left[ \bruch{1-t}{3}*x^3 - \bruch{t}{2}*x^2\right]_0^{\bruch{t}{1-t}}$ [/mm]

$A(t) \ = \ [mm] \bruch{(1-t)}{3}*\bruch{t^3}{(1-t)^3} [/mm] - [mm] \bruch{t}{2}*\bruch{t^2}{(1-t)^2} [/mm] \ - \ 0$

$A(t) \ = \ [mm] \bruch{1}{3}*\bruch{t^3}{(1-t)^2} [/mm] - [mm] \bruch{1}{2}*\bruch{t^3}{(1-t)^2}$ [/mm]

$A(t) \ = \ [mm] -\bruch{1}{6}*\bruch{t^3}{(t-1)^2}$ [/mm]


Loddar


Bezug
        
Bezug
Extremwertaufgabe: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 23:51 Do 10.02.2005
Autor: dominik

[mm]f(x)=-x^3+36x=-x* \left( x^2-36 \right)=-x*(x+6)*(x-6)[/mm]
Nullstellen bei -6, 0, +6
Skizze: Die abgebildete Funktion hat die Gleichung [mm]f(x)= \bruch{1}{10} \left( -x^3+36x \right)[/mm], damit sie besser zu sehen ist ...
[Dateianhang nicht öffentlich]
Flächeninhalt des Streifens: untere unbekannte Grenze: a; obere Grenze: a+3, weil der Streifen die Breite 3 hat:
[mm]A=\integral_{a}^{a+3} {\left( 36x-x^3 \right) dx}=...=-3*a^3-\bruch{27}{2}*a^2+81*a+ \bruch{567}{4}=A(a)[/mm]

A(a) ableiten und gleich Null setzen:
[mm]A'(a)=-9*a^2-27*a+81[/mm]
[mm]A'(a)=0 \gdw -9*a^2-27*a+81=0 \gdw -a^2-3a+9=0[/mm]

[mm] \Rightarrow a_1= -\bruch{3}{2}*\left( \wurzel{5}+1 \right)<0! [/mm] ist nicht Lösung;
[mm]a_2= \bruch{3}{2}*\left( \wurzel{5}-1 \right)[/mm]

Die beiden Randgeraden des Streifens haben die Gleichung
[mm]x_1= \bruch{3}{2}*\left( \wurzel{5}-1 \right)[/mm]
[mm]x_2= \bruch{3}{2}*\left( \wurzel{5}-1 \right)+3=\bruch{3}{2}*\left( \wurzel{5}+1 \right)[/mm]

Viele Grüsse
dominik


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de