www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:31 Mi 08.10.2008
Autor: Rated-R

Aufgabe
Gegeben ist ein Kegel A, dessen Grundfläche den Radius 4 cm hat, und der 10 cm hoch ist. In diesen Kegel A soll ein Kegel B einbeschrieben werden, der mit seiner Spitze auf der Grundfläche des Kegels A steht. Wie ist die Höhe des Kegels B, wenn er a) das maximale Volumen hat und b) die maximale Oberfläche hat?

Hi,

komme bei dieser Aufgabe leider nicht weiter.

Ansatz:

I. [mm] A(r,h)=\bruch{1}{3}*pi*r^2*h [/mm]

II. [mm] \bruch{r}{4}=\bruch{h}{10} [/mm]

Jedoch komme ich hierbei auf kein vernünftiges Ergebnis. Kann mir jemand sagen was ich falsch gemacht habe. Danke

Gruß

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mi 08.10.2008
Autor: Zwerglein

Hi, rated,

> Gegeben ist ein Kegel A, dessen Grundfläche den Radius 4 cm
> hat, und der 10 cm hoch ist. In diesen Kegel A soll ein
> Kegel B einbeschrieben werden, der mit seiner Spitze auf
> der Grundfläche des Kegels A steht. Wie ist die Höhe des
> Kegels B, wenn er a) das maximale Volumen hat und b) die
> maximale Oberfläche hat?

> Ansatz:
>  
> I. [mm]A(r,h)=\bruch{1}{3}*pi*r^2*h[/mm]

Du musst schon etwas Erläuterndes dazu schreiben. Meinst Du mit A den äußeren Kegel? Ich glaube nicht, denn dann könntest Du ja r=4 und h=10 einsetzen.
Demnach wirst Du wohl mit A das Volumen des Kegels B bezeichnen (sinnvoll?!) und mit r dessen Grundflächenradius und mit h dessen Höhe.

> II. [mm]\bruch{r}{4}=\bruch{h}{10}[/mm]

Du verwendest also den Strahlensatz (Vierstreckensatz), aber leider falsch, denn auf der rechten Seite muss es heißen:

[mm] \bruch{10-h}{10} [/mm]
mfG!
Zwerglein

Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Mi 08.10.2008
Autor: Rated-R

also mit I. war der innere Kegel gemeint, das mit dem Strahlensatz ist mir klar, jedoch verstehe ich nicht ganz wieso dann auf der rechten Seite nicht auch stehen müsse [mm] \bruch{4-r}{4}? [/mm]

Aber gut:

I. [mm] A(r,h)=\bruch{1}{3}*r^2*pi*h [/mm]

II. [mm] \bruch{r}{4}=\bruch{10-h}{h} [/mm]

A(h) = [mm] \bruch{1}{3}*(4-\bruch{4h}{10})^2*pi*h [/mm]

A(h) = [mm] \bruch{1}{3}*(16-\bruch{32h}{10}+\bruch{16h^2}{100})*pi*h [/mm]

A(h) = [mm] \bruch{1}{3}*(16h*pi-\bruch{32h^2*pi}{10}+\bruch{16h^3*pi}{100}) [/mm]

soweit richtig?

Danke für eure Hilfe!

Gruß


Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Mi 08.10.2008
Autor: leduart

Hallo
zur ersten Frage: r und 10 sind die 2 parallelen, 10-h und 10 sind die 2 laengen von der Spitze aus!
Die Rechnung ist richtig.
pi wuerd ich ausserhalb der Klammer lassen, wie die 1/3 das gibt meist weniger Fehler spaeter.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de