www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage
Status: (Frage) beantwortet Status 
Datum: 18:24 Di 22.02.2005
Autor: andy009

Hallo!

Habe folgende Extremwertaufgabe zu lösen:
Eine Holzplatte soll um eine Ecke eines rechtwinkeligen Hausflurs gebracht werden. Der Gang in eine Richtung hat eine Breite von 2m, der Gang normal darauf 2,5m.
Wie lang darf die Glasplatte höchstens sein, damit sie um die Ecke transportiert werden kann?

Mein Ansatz ist mit dem Phytagoras, da komme ich jedoch nicht weiter:
[mm] l^{2}=(2+x)^{2}+(2,5+y)^{2} [/mm]

Bitte um Hilfe! Danke!

mfg andy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgabe: Antwort bzw. Hilfe
Status: (Antwort) fertig Status 
Datum: 19:09 Di 22.02.2005
Autor: Zwerglein

Hi, Andy,

ist's nun 'ne Holz- oder 'ne Glasplatte?
Egal: Die Rechnung ändert sich dadurch ja nicht.
Mein Vorschlag: Betrachte die Situation in einem Koordinatensystem mit der "äußeren" Ecke des Flurs als Ursprung (O).
Dann hat die "innere Ecke" - ich nenn' sie mal P (also die, um die die Platte herumgezogen werden soll) die Koordinaten P(2; 2,5).
Wenn Du nun die Platte um die Ecke rumziehst, dann geht das so grade noch, wenn beide Enden genau an den rechtwinklig anstehenden Außenwänden liegen, während sie irgendwo dazwischen die Ecke P berührt, diese "enthält".
Nun zur Mathematik: Durch die Ecke P(2; 2,5) gehen die Geraden mit der Gleichung
y=m(x-2)+2,5 oder: y=mx+2,5-2m. ("Geradenbüschel" durch P.)
Diese schneidet die x-Achse (also die eine Seitenwand!) bei [mm] x=\bruch{2m-2,5}{m}, [/mm] die y-Achse (also die andere Wand) bei y=2,5-2m.
Die Punkte, in denen die Platte beim Rumziehen um die Ecke die beiden Außenwände berührt, haben in unserem KS also die Koordinaten:
A( [mm] \bruch{2m-2,5}{m} [/mm] ;  0) und B( 0 ; 2,5-2m).

Und worum geht's nun?
Antwort: Darum, dass die Strecke zwischen A und B ihr Minimum  annimmt, denn länger als dieses Minimum darf die Platte natürlich nicht sein.
Also: Gesucht ist das Minimum von [mm] \overline{AB}. [/mm]

[mm] \overline{AB} [/mm] wiederum ist die Hypothenuse eines rechtwinkligen Dreiecks mit den Seiten [mm] x_{A} [/mm] und [mm] y_{B}. [/mm]
Nun erkennt man aber, dass hierbei ein - nicht allzu trivialer - Wurzelterm herauskommt.
Daher eine Zwischenüberlegung: Wenn eine Strecke minimal ist im Vergleich zu anderen Strecken, so gilt dies auch für ihr Quadrat.

Folgerung: Wir können statt eines Minimums für [mm] \overline{AB} [/mm] auch das Minimum für [mm] \overline{AB}^{2} [/mm] bestimmen.
Letzteres ist eine gebrochen-rationale Funktion in der Variablen m.

So: Aber nun hab' ich erst mal genug geholfen. Versuch's also selbst!

mfG!
Zwerglein





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de