www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgaben
Extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mo 12.06.2006
Autor: Vicky89

Aufgabe 1
Auf einer Parabel mit f(x)= x²-6x+9 0 [mm] \le [/mm] x [mm] \le3 [/mm] liegt der Punkt P (u/v). Der Ursprung O und P sind gegenüberliegende Ecken eines Rechtsecks von denen zwei Seiten auf den Koordinatenachsen liegen. FÜr welchen Punkt P hat dieses Rechteck einen maximalen Flächeninhalt?

Aufgabe 2
Aus drei rechteckigen Blechplatten soll eine 2m lange Rinne gebaut werden, die eine rechteckige Querschnittfläche von 215cm² haben soll. Wie müssen Höhe und Breite gewählt werden, wenn der Materialverbrauch möglichst niedrig sein soll? Wie groß ist die?

Ich komme mit diesen beiden AUfgaben überhaupt nicht klar, bekomm irgendwie auch keinen wirklich Ansatz hin, kann mir jemand helfen??

LG

        
Bezug
Extremwertaufgaben: Ansatz
Status: (Antwort) fertig Status 
Datum: 23:18 Mo 12.06.2006
Autor: Siegfried


> Auf einer Parabel mit f(x)= x²-6x+9 0 [mm]\le[/mm] x [mm]\le3[/mm] liegt der
> Punkt P (u/v).

Am besten erstmal aufmalen.

> Der Ursprung O und P sind gegenüberliegende
> Ecken eines Rechtsecks von denen zwei Seiten auf den
> Koordinatenachsen liegen.

Das Rechteck mit dazu malen.

> Für welchen Punkt P hat dieses
> Rechteck einen maximalen Flächeninhalt?

Jetzt kannst Du Dir erstmal den Punkt P und seine Koordinaten genauer anschauen.

P(u;v) hat den Abstand x=u von der y-Achse und y=v von der x-Achse.

Weil P ein Punkt der Funktion f(x)= x²-6x+9 0 [mm]\le[/mm] x [mm]\le3[/mm] ist weißt Du über u und v auch gut Bescheid.

Na, und der Flächeninhalt eines Rechtecks ist dann wohl kein Problem mehr.

Zur 2. Aufgabe:

>  Aus drei rechteckigen Blechplatten soll eine 2m lange
> Rinne gebaut werden, die eine rechteckige Querschnittfläche
> von 215cm² haben soll.

Wie gehabt erstmal aufmalen:

Eine u-förmige Rinne mit der Höhe h und der Breite b.

> Wie müssen Höhe und Breite gewählt
> werden, wenn der Materialverbrauch möglichst niedrig sein
> soll? Wie groß ist die?

Mit Querschnittsfläche ist die Fläche hxb gemeint.

Die Seite x der rechteckigen Blechplatten ist schon festgelegt durch die geforderte Länge der Rinne.

Die Seite y ergibt sich aus Höhe und Breite der Rinne. Damit kannst Du eine Gleichung formulieren, die die Variablen y, b und h enthält.

Gleichsetzen dieser Gleichung und der Gleichung für den Flächeninhalt der Querschnittsfläche liefert Dir eine Funktion, die Du dann nach Herzenslust auf lokale Extrempunkte untersuchen kannst.

Ich hoffe, es hilft ein bischen.

Wenn nicht, frag einfach nochmal.

Viel Spaß, Siegfried

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de