www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgaben
Extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben: Hilfe zu Aufgaben
Status: (Frage) beantwortet Status 
Datum: 13:47 Do 28.09.2006
Autor: derhilfebrauchende

Aufgabe
[]http://bimbo.mymage.de/aufgaben.jpg

Hallo,
ich musste bis zu morgen (29.09.06) Aufgaben berechnen. Auf dem folgenden

Arbeitsblatt entweder a) oder b) von jeder Aufgabe. Da ich flach liege und tot

krank bin gerat ich schon in's Schwitzen, wenn ich das hier am PC tippe... hab

Fieber. Da wir eine total nette Mathelehrerin haben, die selbst Krankheiten,

Todesfälle in der Familie etc. nicht als Rechtfertigung akzeptiert, muss ich

irgendwie die Lösungen bekommen und hoffe jetzt auf Hilfe von Euch.
Hier das Blatt: Also entweder a oder b von jeder Aufgabe. Dazu brauch ich

Hauptbedingung, Nebenbedingung, Zielfunktion, Untersuchung der Zielfkt. auf

lokales Extrema.Danke vielmals ~ der, der jetzt echt mal Hilfe braucht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Extremwertaufgaben: dankessagung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 28.09.2006
Autor: derhilfebrauchende

wollte nur eben meinen dank aussprechen an steffan, der das hier lieberweise bearbeitet... hatte mir sogar selbst schon lösungsansätze gemacht, aber ich komm nich weit - mir dröhnt der kopf... ich schau dann nachher nochmal, danke danke danke!

Bezug
        
Bezug
Extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Do 28.09.2006
Autor: Stefan-auchLotti

[mm] \mbox{Hi,} [/mm]

[mm] \mbox{Erst mal: Gute Besserung!} [/mm]

[mm] \mbox{1a):} [/mm]

[mm] \mbox{ - Hauptbedingung: } [/mm] $ [mm] V_{Quader}=a^2b [/mm] $

[mm] \mbox{ - Definitionsbereich: } $D_{V}=D_{O}=\{a,b\in\IR | a,b>0\}$ [/mm]

[mm] \mbox{ - Nebenbedingung: 1. Nach vorn offen.} [/mm]

[mm] \mbox{ - Nebenbedingung: 2. } O_{Quader}=3ab+2a^2=3 \gdw b=\bruch{3-2a^2}{3a}=\bruch{1}{a}-\bruch{2a}{3} [/mm]

[mm] \mbox{Zielfunktion: } $V(b)=a^2*(\bruch{1}{a}-\bruch{2a}{3})=a-\bruch{2a^3}{3} \Rightarrow V'(b)=-2a^2+1 \Rightarrow V''(b)=-4a^2$ [/mm]

[mm] \mbox{Extrema berechnen:} [/mm]

[mm] \mbox{NB: } $V'(a_{0})=0$ [/mm]

$V'(a)=0 [mm] \gdw -2a^2+1=0 \gdw a_{1}=\wurzel{\bruch{1}{2}} \vee a_{2}=-\wurzel{\bruch{1}{2}}$ [/mm]

[mm] $a_{2}$ \mbox{ fällt weg, da es außerhalb des Definitionsbereiches liegt.} [/mm]

[mm] \mbox{HB: } $V'(a_{0})=0 \wedge V''(a_{0})\not=0$ [/mm]

[mm] $V''(\wurzel{\bruch{1}{2}})<0 \Rightarrow [/mm] Maximum$

[mm] \Rightarrow b=\bruch{1}{\bruch{1}{2}}-\bruch{2*\bruch{1}{2}}{3}=2-\bruch{1}{3}=1\bruch{2}{3} [/mm]

[mm] \mbox{Das Fassungsvermögen wird also für } $b=1\bruch{2}{3}$ \mbox{ und } $a=\wurzel{\bruch{1}{2}}$ \mbox{ maximal.} [/mm]



[mm] \mbox{2a):} [/mm]

[mm] \mbox{Hauptbedingung: } $O_{Zylinder}=\pi*r(r+2h)$ [/mm]

[mm] \mbox{Nebenbedingung: } $V_{Zylinder}=\pi*r^2*h=1 \gdw h=\bruch{1}{\pi*r^2}$ [/mm]

[mm] \mbox{Definitionsbereich: } $D_{O}=D_{V}=\{r,h\in\IR | r,h>0\}$ [/mm]

[mm] \mbox{Zielfunktion: } $O(r)=\pi*r(r+\bruch{2}{\pi*r^2})=\pi*r^2+\bruch{2}{\pi*r}=\pi*r^2+\bruch{2}{\pi}r^{-1} \Rightarrow O'(r)=2\pi*r-\bruch{2}{\pi}r^{-2} \Rightarrow O''(r)=2\pi+\bruch{4}{\pi}r^{-3}$ [/mm]

[mm] \mbox{Extrema berechnen:} [/mm]

[mm] \mbox{NB: } $O'(r_{0})=0$ [/mm]

$O'(r)=0 [mm] \gdw 2\pi*r-\bruch{2}{\pi*r^2}=0 \gdw (2\pi*r)*(\pi*r^2)-2=0 \gdw 2\pi^2*r^3-2=0 \gdw r^3=\bruch{2}{2\pi^2} \gdw r=\wurzel[3]{\bruch{1}{\pi^2}}$ [/mm]

[mm] \mbox{HB: } $O'(r_{0})=0 \wedge O''(r_{0})\not=0$ [/mm]

[mm] $O''(\wurzel[3]{\bruch{1}{\pi^2}})>0 \Rightarrow [/mm] Minimum$

$ [mm] \Rightarrow h=\bruch{1}{\pi*(\wurzel[3]{\bruch{1}{\pi^2}})^2}=\bruch{1}{\wurzel[3]{\bruch{1^2}{\pi}}}=\wurzel[3]{\bruch{1}{\pi}}$ [/mm]

[mm] \mbox{Der Materialverbrauch wird also für } h=\wurzel[3]{\bruch{1}{\pi}} \mbox{ und } r=\wurzel[3]{\bruch{1}{\pi^2}} \mbox{ minimal.} [/mm]


[mm] \mbox{Bis hierhin erst mal irgendwelche Fragen?} [/mm]

[mm] \mbox{Grüße,} [/mm]

[mm] \mbox{Stefan.} [/mm]

[mm] \mbox{EDIT: Habe es nachträglich ins dimensionslose transformiert.} [/mm]

Bezug
                
Bezug
Extremwertaufgaben: danke und zur nächsten Aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Do 28.09.2006
Autor: derhilfebrauchende

hey stefan! danke dir vielmals, bin um einiges reicher. ich hab auch schon nummer 5 gelöst. nun brauch ich nur noch 4. a oder b und 3. a oder b.
danke schonmal...wow!

Bezug
                
Bezug
Extremwertaufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Do 28.09.2006
Autor: derhilfebrauchende

Hey, hat also. Aufgabe 4. a) hab ich jetzt doch noch geschafft. Ich brauch nur noch 3. a) oder 3. b) ! Danke!

Bezug
        
Bezug
Extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Do 28.09.2006
Autor: Stefan-auchLotti

[mm] \mbox{Hi noch mal,} [/mm]

$ f:f(x)=x+2 $

$ a=4 $

$ b=5 $

[mm] \mbox{Hauptbedingung: } $A_{Rechteck}=p*q$ [/mm]

[mm] \mbox{Nebenbedingungen: } [/mm] $p=a-x [mm] \wedge [/mm] q=b-[b-f(x)]=f(x)$

[mm] \mbox{Definitionsbereich: } $D=\{p,q\in\IR | 5>q>0 \wedge 4>p>0\}$ [/mm]

[mm] $\Rightarrow A(x)=(4-x)*(x+2)=4x-x^2+8-2x \Rightarrow [/mm] A'(x)=-2x+2 [mm] \Rightarrow [/mm] A''(x)=-2$

[mm] \mbox{Extrema berechnen:} [/mm]

[mm] \mbox{NB: } $A'(x_{0})=0$ [/mm]

$A'(x)=0 [mm] \gdw [/mm] -2x-2+4=0 [mm] \gdw [/mm] x=1$

[mm] \mbox{HB: } $A'(x_{0})=0 \wedge A''(x_{0})\not=0$ [/mm]

$A''(1)=-2 < 0 [mm] \Rightarrow [/mm] Maximum$

[mm] $\Rightarrow [/mm] p=4-1=3 [mm] \wedge [/mm] q=f(1)=1+2=3$

[mm] \Rightarrow A_{maximal}=3*3=9 [/mm]

[mm] \mbox{Der Flächeninhalt wird für } [/mm] $ p=3 $ [mm] \mbox{ und } [/mm] $ q=3 $ [mm] \mbox{ maximal.} [/mm]

[mm] \mbox{Grüße,} [/mm]

[mm] \mbox{Stefan.} [/mm]

[mm] \mbox{EDIT: Habe es nachträglich ins dimensionslose transformiert.} [/mm]


Bezug
                
Bezug
Extremwertaufgaben: dimensionslos rechnen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Do 28.09.2006
Autor: Walty

[mm]\mbox {Hallo Lotti/Stefan}[/mm]

[mm]\mbox {Dein Rechenweg ist absolut korrekt, aber...}[/mm]
[mm]\text{ich müsste da noch 'ne Korinthe loswerden}[/mm]

[mm]\mbox {Wie Du schon in Deinem Schlussatz bemerkst, ist Deine Verwendung der Einheit/Dimension } dm \mbox{ in der Rechnung eher problematisch}[/mm]

[mm]\mbox {an dieser Stelle z.B.:}[/mm]
>

> [mm]\Rightarrow A(x)=(4dm-x)*(5dm-[x+2])=(4dm-x)*(x+2)=4dm*x-x^2+8dm-2x \Rightarrow A'(x)=-2x-2+4dm \Rightarrow A''(x)=-2[/mm]

>

[mm]\mbox{kommst Du damit in erhebliche Schwierigkeiten, weil Du schreibst:}[/mm]

[mm] A(x)=...=4dm*x-x^2+8dm-2x [/mm]

[mm] \text{Also eine Fläche, Einheit } {dm}^2=4{dm}*x-x^2 ... \text{(hier kann man wohlwollend die Einheit }\ dm\ \text{noch implizit in}\ x\ \text{enthalten annehmen) ...}[/mm]
[mm] +8dm-2x\ \Leftarrow\text{(aber spätestens hier kneift es, weil Du hier }\underline{\text{eine Länge (!)}}( 8dm ) \text{ stehen hast )}[/mm]

[mm]\text{ der Fehler liegt schon in der ersten Zeile, wo du }x+2dm\ \text{hättest schreiben müssen und dann konsequent mitschleppen}[/mm]

[mm]\text{Auch dein Ergebnis}[/mm]
[mm]q=2dm+1 \text{ passt nicht - Du Kannst nicht die dimensionbehaftete Größe } 2dm\text{ mit einer dimensionslosen }1\ \text{verrechnen} [/mm]

[mm]\text{Langen Geschwafels kurzer Sinn: am besten ohne Dimensionen rechnen, die schütteln sich (fast) immer zurecht.}[/mm]
[mm]\text{Worauf man allerdings achten muss, ist dass man bei allen Größen die gleiche Größenordnung } (dm \neq cm) \text{ hat !}[/mm]


[mm]\text{Gruß Walty}[/mm]

...

>  
> [mm]\Rightarrow A_{maximal}=(2dm+1)*(2dm+1)=4dm^2+2dm+2dm+1=4dm^2+4dm+1[/mm]
>  
> [mm]\mbox{Der Flächeninhalt wird für }[/mm]  [mm]p=2dm+1[/mm] [mm]\mbox{ und }[/mm]  
> [mm]q=2dm+1[/mm] [mm]\mbox{ maximal.}[/mm]
>  
> [mm]\mbox{Alles klar? Du kannst diese ganze Rechnung natürlich auch ohne das Zeichen [dm] machen, so kommst du auf ein wirkliches Ergebnis.}[/mm]
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de