www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertberechnung
Extremwertberechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 So 05.03.2006
Autor: Ninchen2000

Aufgabe
Ein gleichschenkeliges Trapez mit dem Böschungswinkel α=60° ist Querschnitt eines 100m langen Stollens mit der vorgegebenen Querschnittsfläche A. Wie sind die Abmessungen zu wählen, damit die Größe der (etwa mit Spritzbeton) zu befestigenden Wand- und Bodenflächen minimal wird?

Kann mir bei dieser Aufgabe bitte jemand helfen…ich komme echt nicht weiter. Ich bin mir schon bei der Hauptbedingung nicht sicher: genügt es wenn a+2b minimal sein muss. Oder geht es um die ganzen Flächen, also: 100.a+2.100.b muss minimal werden ???
Und dann hab ich noch ein Problem mit der Nebenbedingung: Vom Trapez hab ich eigentlich nur die Fläche und den Winkel gegeben. Aber ich hab keine Ahnung wie ich da eine Bedingung herleiten soll. Kann mir da jemand weiterhelfen????

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extremwertberechnung: Hilfe zum Ansatz
Status: (Antwort) fertig Status 
Datum: 22:21 So 05.03.2006
Autor: chrisno

Hallo Ninchen2000,

minimal werden soll der Umfang des Trapezes, wenn auch die Decke unter "Wand und Bodenflächen" zählt. Andernfalls sind tatsächlich nur die Seitenwände und der Boden gemeint.
Durch die Vorgaben für das Trapez (Böschungswinkel und Symmetrie) ist es durch die Angabe von Höhe und Grundfläche festgelegt.
Also: Aus Höhe und Grundlinie kannst Du den Umfang ausrechnen, der minimal werden soll.

Die Nebenbedingung ist die Fläche des Trapezes. Auch die läßt sich anhand der Vorgaben aus Höhe und Grundlinie berechnen.

Die 100 m brauchst Du nicht.


Bezug
                
Bezug
Extremwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Mo 06.03.2006
Autor: Ninchen2000

Hallo! Ich hab zu dieser Aufgabe noch eine weitere Frage. Also Hauptbedingung und Nebenbedingung ist mir klar. Wenn die HB, der Umfang des Trapezes ist, dann habe ich: U=a+2b+c   Es geht jetzt also darum b und c durch a=der Grundkante und h=der Höhe auszudrücken. Aber wie??? Ich komme einfach nicht drauf, vielleicht sehe ich es einfach nicht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Bezug
                        
Bezug
Extremwertberechnung: Skizze + Winkelfunktionen
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 06.03.2006
Autor: Roadrunner

Hallo Ninchen!


Bitte stelle auch Rückfragen zu bestehenden Aufgaben auch im entsprechenden Thread. Danke.


Zunächst einmal sollte man sich eine Skizze machen und die entsprechenden Größen eintragen:

[Dateianhang nicht öffentlich]


Dann kannst Du die Winkelfunktionen verwenden, da Du ja einen Winkel im rechtwinkligen Dreieck mit [mm] $\alpha [/mm] \ = \ 60°$ gegeben hast.

Ich würde hier alle Größen in Abhängigkeit von $b_$ ermitteln.

[mm] $\sin(60°) [/mm] \ = \ [mm] \bruch{h}{b}$ $\gdw$ [/mm]   $h \ = \ [mm] b*\sin(60°) [/mm] \ = \ [mm] b*\bruch{1}{2}*\wurzel{3}$ [/mm]

[mm] $\cos(60°) [/mm] \ = \ [mm] \bruch{\Delta}{b}$ $\gdw$ $\Delta [/mm] \ = \ [mm] b*\cos(60°) [/mm] \ = \ [mm] b*\bruch{1}{2}$ [/mm]

$c \ = \ [mm] a+2*\Delta$ [/mm]

Damit wird für den Umfang:

$U \ = \ a+2*b+c \ = \ [mm] a+2*b+a+2*\Delta [/mm] \ = \ [mm] 2*(a+b+\Delta) [/mm] \ = \ [mm] 2*\left(a+b+b*\bruch{1}{2}\right) [/mm] \ = \ 2a+3b$


Und aus der Flächenformel können wir nun die letzte Variable ersetzen bzw. ermitteln und in die Zielfunktion (= Hauptbedingung) einsetzen:

$A \ = \ [mm] \bruch{a+c}{2}*h [/mm] \ = \ [mm] \bruch{a+(a+2*\Delta)}{2}*h [/mm] \ = \ [mm] (a+\Delta)*h [/mm] \ = \ [mm] \left(a+b*\bruch{1}{2}\right)*b*\bruch{1}{2}*\wurzel{3} [/mm] \ = \ ...$


Gruß vom
Roadrunner


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de