www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwertbestimmung
Extremwertbestimmung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Di 12.01.2010
Autor: apfelmus

Aufgabe
Bestimmen Sie alle Extremwerte der Funktion

f(x,y)= [mm] x^{2}\*(y+1)+\bruch{1}{2}{(y-1)}^2 [/mm]

Hallo ich habe Probleme mit der Feststellung der Art der Extrema.
Mit partiellem Ableiten bin ich auf X1=0 [mm] X2=\wurzel{2} [/mm] und [mm] X3=-\wurzel{2} [/mm] gekommen.
Wie bestimme ich aber, ob es sich um einen HP, TP oder Wendepunkt/Sattelpunkt handelt und zwar ohne die 2. Ableitung machen zu müssen.
Wir hatten da  mal eine Formel, aber ich find die nirgends mehr.
Vielen Dank!

        
Bezug
Extremwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Di 12.01.2010
Autor: der-gt

hey schau mal hier das sollte deine frage beantworten :)
http://de.wikipedia.org/wiki/Kurvendiskussion#Hinreichende_Bedingung:_Vorzeichen_der_ersten_Ableitung


gruß und schönen abend

Bezug
                
Bezug
Extremwertbestimmung: nur eindimensional
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 Di 12.01.2010
Autor: Loddar

Hallo der-gt,

[willkommenmr] !!!



Dieser Link bezieht sich aber auf Funktionen mit lediglich einer Unbekannten / Variablen.

Daher stelle ich die Frage mal wieder auf "teilweise beantwortet".


Gruß
Loddar


Bezug
        
Bezug
Extremwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Di 12.01.2010
Autor: schachuzipus

Hallo apfelmus,

> Bestimmen Sie alle Extremwerte der Funktion
>  
> f(x,y)= [mm]x^{2}\*(y+1)+\bruch{1}{2}{(y-1)}^2[/mm]
>  Hallo ich habe Probleme mit der Feststellung der Art der
> Extrema.
>  Mit partiellem Ableiten bin ich auf X1=0 [mm]X2=\wurzel{2}[/mm] und
> [mm]X3=-\wurzel{2}[/mm] gekommen.
>  Wie bestimme ich aber, ob es sich um einen HP, TP oder
> Wendepunkt/Sattelpunkt handelt und zwar ohne die 2.
> Ableitung machen zu müssen.
>  Wir hatten da  mal eine Formel, aber ich find die nirgends
> mehr.

Du hast eine Funktion in 2 Variablen gegeben, die beschreibt dir eine Fläche im [mm] $\IR^3$ [/mm]

Hier ein Bildchen:

[Dateianhang nicht öffentlich]

Du musst schon die Mittel der mehrdimensionalen Differentialrechnung heranziehen.

Bestimme mal die partiellen Ableitungen nach x,y

Also [mm] $f_x(x,y)=...$ [/mm] und [mm] $f_y(x,y)=...$ [/mm]

Die setze beide =0, um die kritischen Punkte - sog. stationäre Punkte - zu berechnen.

Ich erhalte 3 Stück.

Dann benötigst du im weiteren die []Hessematrix in diesen Punkten.

Berechne dazu die zweiten partiellen Ableitungen und auch die gemischten, also [mm] $f_{xx}(x,y), f_{yy}(x,y), f_{xy}(x,y), f_{yx}(x,y)$ [/mm] ...

Dann untersuche die Hessematrix auf Definitheit, um die Art der Extrema zu bestimmen ...

LG

schachuzipus


>  Vielen Dank!


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Extremwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Sa 27.02.2010
Autor: martinii

Hallo,
bin grad dabei, als Übung, diese Aufgabe zu berrechnen.
Leider komm ich irgendwie auf keinen kritischen Punkt.

Ich hab als erstes die Klammer aufgelöst von f(x,y)
--> [mm] f(x,y)=x^2y+x^2-1/1y^2-y+1/2 [/mm]

Dann hab ich die p. Ableitung nach x und y gemacht:
fx(x,y)=2xy+2x und [mm] fy(x,y)=x^2+y-1 [/mm]

Um die kritischen Punkte zu bekommen müssen die 2 gleichungen =0 gesetzt werden, aber irgendwie bekomm ich hier nichts raus.


vll kann mir ja jdm. helfen. danke
lg

Bezug
                        
Bezug
Extremwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Sa 27.02.2010
Autor: Calli

Hey !

[mm] $2\,x\,y+2\,x =2\,x\,(y+1)=0$ [/mm]
und
$ [mm] x^2+y-1 =0\quad \Rightarrow \quad x^2+y+1 [/mm] =2$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de