Extremwertproblem < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:22 So 10.09.2006 | Autor: | hansi.89 |
Aufgabe | Gegeben ist die Parabel mit y=4-x² . Es sollen alle Punkte auf der Parabel bestimmt werden, deren Abstand zum Koordinatenurpsrung (0/0) minimal ist:
a) Zeichnen Sie die Parabel und zeigen Sie:
-> f mit f(x)=wurzel von x²+(4-x²)²
b) Begründung Sie: Die Funktion g mit g(x)=x²+(4-x²)² hat genau an der Stelle ein Minimum, an der auch die Funktion f ein Minimum hat.
c) Bestimmen Sie die gesuchten Punkte, indem Sie zur Extremwertberechnung die Funktion g verwenden
d) Entscheiden Sie ob gilt:
Wenn für eine Funktion f gilt:
f(x) > 0 für x Element von [a,b]. Dann gilt: f hat genau an der Stelle x0 ist Element von [a,b] ein Maximum(Minimum), falls g mit g(x)=(f(x))² dort ein Maximum (Minimum) hat. Begründen Sie Ihre Entscheidung. |
Lange ists her... wie geht das?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:50 So 10.09.2006 | Autor: | Teufel |
a) Einzeichnen schaffs du sicher
b) Naja, da die Funktion f an 2 Stellen ein Minimum hat, hat g genau an diesen Stellen auch ein Minimum, weil die Tiefpunkte y-Koordinaten haben, die größer als 0 sind.
Quadriert man nun f, dann "rutschen" die Tiefpunkte halt nur etwas höher, genau wie all die anderen Funktionswerte. Trotzdem, wenn man die kleinsten Funktionswerte (nämlich die Tiefpunkte von f) quadriert, dann werden sie auch die kleinsten Funktionswerte (von g) sein.
c) g gibt also den Abstand von f(x)=4-x² an und O(0|0) an.
Also muss man hier die Tiefpunkte von g herausfinden, weil die den x-Wert angeben, an dem der Abstand von f und O(0|0) am kleinsten ist.
Das heißt also:
g ableiten
g' 0 setzen
x-Werte ausrechnen.
d) hab ich schon in b) gesagt. Wenn der kleinste Funktionswert wie die anderen Funktionswerte in einem Intervall quadriert wird, dann bleibt er ja trotzdem der kleinste Funktionswert. Wie gesagt zählt das nur, wenn f(x)>0 ist, denn wenn ein Tiefpunkt eine y-Koordinate kleiner als 0 hat, dann hat er trotzdem betragsmäßig die größte Zahl in einem noch so kleinen Intervall. Und quadriert wird er dann der größte positive y-Wert. Aus einem Tiefpunkt wird dadurch ein Hochpunkt!
Beispiel:
Tiefpunkt hat die y-Koordinate -4. Das heißt, dass die anderen Punkte über -4 liegen, also näher an der 0.
Quadriert man nun die Funktion, dann wird aus der -4 eine 16. Da die anderen Zahlen näher an der 0 liegen (-3 z.B.) werden sie, wenn sie quadriert wurden, kleiner sein als 16. Nämlich -3 würde nur zu 9 werden.
Damit wären alle Punkte um den ehemaligen Tiefpunkt plötzlich kleiner und der Tiefpunkt wird zum Hochpunkt durch's Quadrieren.
Wie gesagt gilt das für f(x)<0!
|
|
|
|