www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Textaufgabe Extremwertproblem
Status: (Frage) beantwortet Status 
Datum: 15:10 Fr 08.05.2009
Autor: jensnAbi011

Aufgabe
Welches rechtwinklige Dreieck mit der Hypothenuse 6 cm erzeugt bei Rotation um eine Kathete (um die Hypothenuse) den Rotationskörper größten Volumens?

Die Aufgabe mit der Kathete, hab ich ,aber die mit der Hypohenuse krieg ich einfach nicht hin!!(entschuldigung, mein pc kann kein pi-zeichen)
des mir der Kathete hab ich so gelöst:  V(kegel)=1/3 [mm] \pi [/mm] r²h
r²=36-x² durch pythagoras
dann eingesetzt:V(x)=12 [mm] \pi [/mm] x-1/3 [mm] \pi [/mm] x³
[mm] V´(x)=12\pi [/mm] - [mm] \pi [/mm] x²
[mm] x=\wurzel{12} [/mm]
dann ist des maximale Volumen ca 87,06 cm³


Jetzt soll sich alles um die 6cm lange Hypothenuse drehen:

bis jetzt hab ich:
V(kegel)=1/3 [mm] \pi [/mm] r²h   daraus folgt: [mm] V(x)=\pi [/mm] r²
h=6cm
durch phytagoras: pi [mm] (\wurzel{x²-9}=V(x) [/mm]
[mm] V(x)=x²\pi- [/mm] 9 [mm] \pi [/mm]
[mm] V´(x)=2\pi [/mm] x

ab da stock ich, denn wenn ich jetzt V´gleich null setzen würde, würde 0 rauskommen, was aber doch gar nicht sein kann


aber es git halt noch 2 wege: entweder, ich geh davon aus, dass ein gleichschenkliges Dreieck(2 Kreiszylinder aufeinander und da die 2 ausenkanten+höhe)
cos 45°=1/6=> [mm] 3*\wurzel{2} [/mm]
18=9+r²
r=3
[mm] V(kreiskegel1)=\pi*9 \approx [/mm] 28,27
oder , andere Möglichkeit zu sagen, es gibt kein maximales Volumen, da die Seitenkanten unendlich lang sein können, und somit auch das Volumen unendlich wäre

bitte helft mir!! ich schreib in 2 tagen über so was ne arbeit Bitte!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Fr 08.05.2009
Autor: M.Rex

Hallo

Der Kegel, der Entsteht hat ja auf jeden Fall das Volumen [mm] V=\bruch{1}{3}*G_{Kegel}*h_{kegel}, [/mm] das ist ja die allgemeine Volumenformel für einen Kegel.

Wenn das Dreieck jetzt um die Kathete rotiert, ist die eine Kathete [mm] k_{1} [/mm] die Höhe, die andere [mm] k_{2} [/mm] der Radius der Kreisgrundfläche.

Also:  [mm] V=\bruch{1}{3}*\pi*k_{1}^{2}*k_{2} [/mm]

Da aber gilt: [mm] k_{1}^{2}+k_{2}^{2}=36 \Rightarrow k_{1}^{2}=36-k_{2}^{2} [/mm]

Also:  [mm] V=\bruch{1}{3}*\pi*(36-k_{2}^{2})*k_{2} [/mm]

Und hiervon suchst du jetzt das Maximum.


Bei der Rotation um die Hypothenuse entstehen 2 Kegel mit dem gleichen Radius der Grundfläche. Dieser ist aber unbekannt.

[Dateianhang nicht öffentlich]

Hier brauchst du dann den Höhensatz des Euklid, also

r²=p*q, mit p+q=6 ergibt sich. r²=p(6-p)

Also ergibt sich:

[mm] V_{oben}=\bruch{1}{3}*\pi*\overbrace{p(6-p)}^{Radius²}*\overbrace{(6-p)}^{h} [/mm]

Und [mm] V_{unten}=\bruch{1}{3}*\pi*\overbrace{p(6-p)}^{Radius²}*\overbrace{p}^{h} [/mm]

Also [mm] V_{doppelkegel}=\bruch{1}{3}*(p(6-p))(6-p)+\bruch{1}{3}*(p(6-p))p [/mm]

Und hiervon suchst du das maximum.

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Bezug
                
Bezug
Extremwertproblem: textaufgabe..
Status: (Frage) beantwortet Status 
Datum: 15:58 Fr 08.05.2009
Autor: jensnAbi011

Aufgabe
  Welches rechtwinklige Dreieck mit der Hypothenuse 6 cm erzeugt bei Rotation um eine Kathete (um die Hypothenuse) den Rotationskörper größten Volumens?

kann man des auch einfacher schreiben , weil den Höhensatz des Euklid kennen wir eigentlich noch gar nicht, geht des also auch ohne den?

Dankeschön :)

->Hallo (zitiert)

Der Kegel, der Entsteht hat ja auf jeden Fall das Volumen $ [mm] V=\bruch{1}{3}\cdot{}G_{Kegel}\cdot{}h_{kegel}, [/mm] $ das ist ja die allgemeine Volumenformel für einen Kegel.

Wenn das Dreieck jetzt um die Kathete rotiert, ist die eine Kathete $ [mm] k_{1} [/mm] $ die Höhe, die andere $ [mm] k_{2} [/mm] $ der Radius der Kreisgrundfläche.

Also:  $ [mm] V=\bruch{1}{3}\cdot{}\pi\cdot{}k_{1}^{2}\cdot{}k_{2} [/mm] $

Da aber gilt: $ [mm] k_{1}^{2}+k_{2}^{2}=36 \Rightarrow k_{1}^{2}=36-k_{2}^{2} [/mm] $

Also:  $ [mm] V=\bruch{1}{3}\cdot{}\pi\cdot{}(36-k_{2}^{2})\cdot{}k_{2} [/mm] $

Und hiervon suchst du jetzt das Maximum.


Bei der Rotation um die Hypothenuse entstehen 2 Kegel mit dem gleichen Radius der Grundfläche. Dieser ist aber unbekannt.

[Dateianhang]

Hier brauchst du dann den Höhensatz des Euklid, also

r²=p*q, mit p+q=6 ergibt sich. r²=p(6-p)

Also ergibt sich:

$ [mm] V_{oben}=\bruch{1}{3}\cdot{}\pi\cdot{}\overbrace{p(6-p)}^{Radius²}\cdot{}\overbrace{(6-p)}^{h} [/mm] $

Und $ [mm] V_{unten}=\bruch{1}{3}\cdot{}\pi\cdot{}\overbrace{p(6-p)}^{Radius²}\cdot{}\overbrace{p}^{h} [/mm] $

Also $ [mm] V_{doppelkegel}=\bruch{1}{3}\cdot{}(p(6-p))(6-p)+\bruch{1}{3}\cdot{}(p(6-p))p [/mm] $

Und hiervon suchst du das maximum.

Marius

Bezug
                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Fr 08.05.2009
Autor: M.Rex

Hallo

Das geht denke ich auch, aber mit mehrfacher Anwendung des Pythagoras. In der Oberstufe sollte der Höhensatz aber zum Standardreprtioire gehören,

Mit dem Satz des Pythagoras gilt:

[mm] p²+r²=k_{1}^{2} [/mm]

Und [mm] q²+r²=k_{2}^{2} [/mm]

Auch hier: p+q=6 und [mm] k_{1}^{2}+k_{2}^{2}=36. [/mm]

Damit solltest du dann auch irgendwie zum Ziel kommen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de