www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem -> Zylinder
Extremwertproblem -> Zylinder < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem -> Zylinder: Aufgabe 11
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:15 Di 20.06.2006
Autor: ichonline

Aufgabe
Es sollen zylinderförmige Töpfe einfachster Bauart mit dem Rauminhalt 2 Liter hergestellt werden. Wie sind Durchmesser und Höhe der Töpfe zu wählen, damit die gesamte Schweißnaht, die am Bodenrand und längs einer Mantellinie angebracht werden soll, minimal wird?Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also ich habe mir das so überlegt.

V(zylinder)=Pi*r²*h           2000cm³=Pi*r²*h                    r=Wurzel(2000/Pi*r)
U(kreis)=2Pi*r


Also Schweißnaht Gesamt: h(mantellinie)+2*Pi*Wurzel(2000/Pi*r)
z(x)=h+2*Pi*Wurzel(2000/Pi*r)

Jetzt weiß ich nur nicht wie man das ableitet. Unsere Lehrerin meint das lernen wir erst in der 12 Klasse. Vielleicht kann mir jemand weiter helfen.

Mfg ichonline!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertproblem -> Zylinder: Produkt- oder Quotientenregel?
Status: (Antwort) fertig Status 
Datum: 20:25 Di 20.06.2006
Autor: Bastiane

Hallo!

> Es sollen zylinderförmige Töpfe einfachster Bauart mit dem
> Rauminhalt 2 Liter hergestellt werden. Wie sind Durchmesser
> und Höhe der Töpfe zu wählen, damit die gesamte
> Schweißnaht, die am Bodenrand und längs einer Mantellinie
> angebracht werden soll, minimal wird?Ich habe diese Frage
> in keinem Forum auf anderen Internetseiten gestellt.
>  Also ich habe mir das so überlegt.
>  
> V(zylinder)=Pi*r²*h           2000cm³=Pi*r²*h              
>      r=Wurzel(2000/Pi*r)

Hier hast du dich vertippt: es muss [mm] \wurzel{\bruch{2000}{\pi*h}} [/mm] heißen!

>  U(kreis)=2Pi*r
>  
>
> Also Schweißnaht Gesamt:
> h(mantellinie)+2*Pi*Wurzel(2000/Pi*r)
>  z(x)=h+2*Pi*Wurzel(2000/Pi*r)

Hier ebenfalls: immer "h" statt "r"!
  

> Jetzt weiß ich nur nicht wie man das ableitet. Unsere
> Lehrerin meint das lernen wir erst in der 12 Klasse.
> Vielleicht kann mir jemand weiter helfen.

Habt ihr denn überhaupt schon Ableitungen gemacht? Müsstet ihr ja eigentlich. Aber ohne Quotienten- oder MBProduktregel kann man das auch nicht ableiten. Habt ihr denn davon etwas gemacht? Ansonsten kannst du die Funktion höchstens zeichnen (lassen) und gucken, wo das Minimum liegt.

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Extremwertproblem -> Zylinder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Di 20.06.2006
Autor: riwe

wenn du nicht r durch h ausdrückst, sondern h durch r so lautet deine funktion
[mm]S= \frac{V}{r^{2}\pi}+2r\pi=\frac{V}{\pi}r^{-2}+2r\pi[/mm].
und das solltest du nun ableiten können.

Bezug
                        
Bezug
Extremwertproblem -> Zylinder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Di 20.06.2006
Autor: Bastiane

Hallo zusammen!

> wenn du nicht r durch h ausdrückst, sondern h durch r so
> lautet deine funktion
>  [mm]S= \frac{V}{r^{2}\pi}+2r\pi=\frac{V}{\pi}r^{-2}+2r\pi[/mm].
>  
> und das solltest du nun ableiten können.

Sorry, hatte ganz übersehen, dass man ja - nach "meiner" Variante - auch noch die Kettenregel benötigt... Aber so wie oben geht's natürlich auch. :-) Wenn man die Quotienregeln bzw. die Produktregel kennt.

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Extremwertproblem -> Zylinder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Di 20.06.2006
Autor: riwe

wenn man es genau nimmt, braucht man bei "meiner" variante weder produkt- noch quotientenregel, das einzige , was man wissen muß, ist, wie man potenzen ableitet.

Bezug
        
Bezug
Extremwertproblem -> Zylinder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:38 Mi 21.06.2006
Autor: ichonline

Danke!!! Ihr habt mir echt geholfen! Ich werde jetzt gleich mal alles nach h auflösen und dann ableiten.

MFG ichonline

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de