www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem ermitteln
Extremwertproblem ermitteln < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem ermitteln: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:13 Di 11.09.2007
Autor: defjam123

Aufgabe
Eine 400m Laufbahn in einem Stadion besteht aus zwei parallen Strecken und zwei angesetzten halbkreisen.Für welchen Radius x der Halbkreise wird die rechteckige Spielfläche Maximal?

Hey leute!

A= a*b

a= 2x
[mm] b=\bruch{400-2*\pi}{2} [/mm]

Zielfunktion:

A= [mm] 2x*(\bruch{400-2*\pi}{2}) [/mm]
[mm] A=400x-2*\pi*x² [/mm]

[mm] A'=400-4*\pi*x [/mm]
A'(x)=0

[mm] 400-4*\pi*x=0 [/mm]
x=31,83

Der Radius muss 31,83° sein damit die recheckige SPielfläche Maximal ist.

Wie ermittle ich jetzt die Randstellen?

danke!

        
Bezug
Extremwertproblem ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Di 11.09.2007
Autor: Carlchen


> Eine 400m Laufbahn in einem Stadion besteht aus zwei
> parallen Strecken und zwei angesetzten halbkreisen.Für
> welchen Radius x der Halbkreise wird die rechteckige
> Spielfläche Maximal?
>  Hey leute!
>  
> A= a*b
>  
> a= 2x
>  [mm]b=\bruch{400-2*\pi}{2}[/mm]
>  
> Zielfunktion:
>  
> A= [mm]2x*(\bruch{400-2*\pi}{2})[/mm]
>  [mm]A=400x-2*\pi*x²[/mm]
>  
> [mm]A'=400-4*\pi*x[/mm]
>  A'(x)=0
>  
> [mm]400-4*\pi*x=0[/mm]
>  x=31,83
>  
> Der Radius muss 31,83° sein damit die recheckige
> SPielfläche Maximal ist.
>  
> Wie ermittle ich jetzt die Randstellen?
>  
> danke!

Hi,

Sieht für mich soweit ganz plausibel und richtig aus, nur sind es 31.83 Meter und nicht Grad.
Was meinst du mit Randstellen? Die Längen der Seiten?


Bezug
        
Bezug
Extremwertproblem ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Di 11.09.2007
Autor: leduart

Hallo   defjam
> Eine 400m Laufbahn in einem Stadion besteht aus zwei
> parallen Strecken und zwei angesetzten halbkreisen.Für
> welchen Radius x der Halbkreise wird die rechteckige
> Spielfläche Maximal?
>  Hey leute!
>  
> A= a*b
>  
> a= 2x

x=Radius

>  [mm]b=\bruch{400-2*\pi}{2}[/mm]

falsch :
hier fehlt der Radius x
b=[mm]b=\bruch{400-2*\pi*x}{2}[/mm]

>  
> Zielfunktion:
>  
> A= [mm]2x*(\bruch{400-2*\pi}{2})[/mm]
>  [mm]A=400x-2*\pi*x²[/mm]

ab hier richtig.

>  
> [mm]A'=400-4*\pi*x[/mm]
>  A'(x)=0
>  
> [mm]400-4*\pi*x=0[/mm]
>  x=31,83
>  
> Der Radius muss 31,83° sein damit die recheckige
> SPielfläche Maximal ist.
>  
> Wie ermittle ich jetzt die Randstellen?

Randstellen wären x=0 und  b=0 d.h. [mm] 2\pi*x=400 [/mm] daraus x

Rest der Rechnung richtig.
Gruss leduart

Bezug
                
Bezug
Extremwertproblem ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Di 11.09.2007
Autor: defjam123

danke dir!
aber wie komm ich denn auf die randstellen?
muss ich da ne bestimmte rechung machen?

Bezug
                        
Bezug
Extremwertproblem ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Di 11.09.2007
Autor: leduart

Hallo
die Funktion ist in der Anwendung ja eine Fläche, also [mm] f(x)\ge0 [/mm] ; und das sind die 2 Nullstellen.
Also immer an den Definitionsbereich der Anwendung denken.
(ausserdem kannst du eigentlich sehen, dass das ne nach unten geöffnete Parabel ist!)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de