www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - "Extremwertprobleme"
"Extremwertprobleme" < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"Extremwertprobleme": Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 15:04 Sa 21.09.2013
Autor: Whiterose

Aufgabe
Gegeben sind f und g durch f(x)=0,5x²+2 und g(x)=x²-2x+2.
Für welchen Wert x Element [0;4] wird die Summe der Funktionswerte extremal?
Um welche Art von Extremum handelt es sich? Geben sie das Extremum an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
wir haben ein paar Hausaufgaben aufbekommen und ich komme teilweise einfach nicht weiter, ich erwarte nich nur Lösungen, weningstens Lösungsansätze oder so.

Also den Ansatz habe ich schon,denn es ensteht die neue Funktion :h(x)=1,5x²-2x+4
Nun weiß ich aber nicht was es mit dem x Element [0;4] auf sich hat ,
Und wie ich diesen Wert in meine Rechnung einbeziehen soll ??

Wäre wirklich toll, wenn mir jemand weiterhelfen könnte mir fehlt die richtige Denkrichtung....

Es wäre auch hilfreich wenn ich gesagt bekommen könnte um welche Art von Extrema es sich handelt .

Würde mich sehr um Hilfe freuen .
Danke schonmal.

        
Bezug
"Extremwertprobleme": Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Sa 21.09.2013
Autor: Diophant

Hallo und

[willkommenvh]

> Gegeben sind f und g durch f(x)=0,5x²+2 und
> g(x)=x²-2x+2.
> Für welchen Wert x Element [0;4] wird die Summe der
> Funktionswerte extremal?
> Um welche Art von Extremum handelt es sich? Geben sie das
> Extremum an.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Hallo,
> wir haben ein paar Hausaufgaben aufbekommen und ich komme
> teilweise einfach nicht weiter, ich erwarte nich nur
> Lösungen, weningstens Lösungsansätze oder so.

>

> Also den Ansatz habe ich schon,denn es ensteht die neue
> Funktion :h(x)=1,5x²-2x+4

Ja, das ist der Funktionsterm. Aber vergiss nicht den Definitionsbereich. Apropos: so wie der hier gegeben ist, gibt es drei Lösungen. Von daher zunächst einmal die Frage: kann es sein, dass in der Originalaufgabe

[mm]x\in(0;4)[/mm]

steht?

> Nun weiß ich aber nicht was es mit dem x Element [0;4]
> auf sich hat ,
> Und wie ich diesen Wert in meine Rechnung einbeziehen soll
> ??

Das ist der Definitionsbereich. Wenn das wirklich ein abgeschlossenes Intervall ist, dann müssen sowohl innere als auch Randextrema berücksichtigt werden.

>

> Wäre wirklich toll, wenn mir jemand weiterhelfen könnte
> mir fehlt die richtige Denkrichtung....

>

> Es wäre auch hilfreich wenn ich gesagt bekommen könnte um
> welche Art von Extrema es sich handelt .

Wozu? Außerdem: Das Extremum, die Extrema, nur so nebenbei.

>

> Würde mich sehr um Hilfe freuen .

Wie gehst du denn sonst an Extremwertaufgaben heran? Hast du dir schon ein Schaubild gezeichnet?

Grob gesprochen muss man untersuchen, ob für die Funktion h(x) mit h(x)=f(x)+g(x) die Gleichung h'(x)=0 im fraglichen Intervall eine Lösung besitzt und unabhängig davon müssen (falls es wirklich ein abgeschlossenes Intervall ist) die Ränder untersucht werden.

Auch hier muss man mal wieder eine Bemerkung machen. Es gibt ziemlich große Illusionen über Sinn, Zweck und Möglichkeiten von Mathematikforen. Sinn und Zweck, dass scheinst du selbst so zu sehen, bestehen nicht im Angeben fertiger Lösungen. Die Möglichkeiten, die wir haben um zielführend zu helfen, die hängend entscheidend davon ab, ob und welche Infos wir bekommen über bereits unternommene Versuche sowie über das vorhandene Wissen. Und dazu hast du leider überhaupt nichts geschrieben!


Gruß, Diophant

Bezug
        
Bezug
"Extremwertprobleme": Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Sa 21.09.2013
Autor: Thomas_Aut

Hallo,

[mm]f(x) = \frac{1}{2}x^2+2[/mm] , [mm]g(x) = x^2-2x+2[/mm]

du hast richtig erkannt dass: [mm](f+g)(x) = \frac{3}{2}x^2-2x+4[/mm] ist.

Nach deiner Notation ist h = f+g. Es ist somit [mm]h(x) = \frac{3}{2}x^2-2x+4[/mm]

Bestimme die Extrema von h indem du:

[mm] \frac{ \partial h}{ \partial x} [/mm] oder anders h' bildest und dies = 0 setzt.

Löse also:

h'(x) = 0.

Anmerkung:Das Extremum liegt im fraglichen Intervall. Es handelt sich um ein Minimum.

Überzeuge dich davon ob die resultierenden Punkte [mm] \in [/mm] [0,4] sind. Falls tatsächlich [0,4] untersucht werden soll (und nicht (0,4) )so betrachte 0 und 4 gesondert (Randextrema).

Gruß Thomas



Bezug
                
Bezug
"Extremwertprobleme": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Sa 21.09.2013
Autor: Diophant

Hallo Thomas_Aut,

hm, wozu hier:

>

> [mm]\frac{ \partial h}{ \partial x}[/mm] oder anders h' bildest und
> dies = 0 setzt.

eine partielle Ableitung gut sein soll? Ein Tippfehler kanns ja nicht sein, da du extra den betreffenden LaTeX-Befehl verwendet hast?

Gruß, Diophant

Bezug
                        
Bezug
"Extremwertprobleme": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:03 Sa 21.09.2013
Autor: Thomas_Aut

Hallo Diophant,

> Hallo Thomas_Aut,
>  
> hm, wozu hier:
>  
> >
>  > [mm]\frac{ \partial h}{ \partial x}[/mm] oder anders h' bildest

> und
>  > dies = 0 setzt.

>  
> eine partielle Ableitung gut sein soll? Ein Tippfehler
> kanns ja nicht sein, da du extra den betreffenden
> LaTeX-Befehl verwendet hast?

Nein das ist auch kein Tippfehler. Ich glaube es kann nicht schaden sich (auch schon zu Schulzeiten) mehrere Schreibweisen einzuprägen. Und auch wenn die Funktion nur von einer Variablen abhängt so ist diese Schreibweise ja dennoch o.k. - m.E. wesentlich übersichtlicher als das f', f'', f''' Zeug ;)

>  
> Gruß, Diophant

Gruß Thomas

Bezug
                                
Bezug
"Extremwertprobleme": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Sa 21.09.2013
Autor: Diophant

Hallo Thomas_Aut,

> Hallo Diophant,

>

> > Hallo Thomas_Aut,
> >
> > hm, wozu hier:
> >
> > >
> > > [mm]\frac{ \partial h}{ \partial x}[/mm] oder anders h'
> bildest
> > und
> > > dies = 0 setzt.
> >
> > eine partielle Ableitung gut sein soll? Ein Tippfehler
> > kanns ja nicht sein, da du extra den betreffenden
> > LaTeX-Befehl verwendet hast?
> Nein das ist auch kein Tippfehler. Ich glaube es kann
> nicht schaden sich (auch schon zu Schulzeiten) mehrere
> Schreibweisen einzuprägen. Und auch wenn die Funktion nur
> von einer Variablen abhängt so ist diese Schreibweise ja
> dennoch o.k. - m.E. wesentlich übersichtlicher als das f',
> f'', f''' Zeug ;)
> >

Halten wir mal fest: in der Schule nimmt man in aller Regel keine Funktionen mehrerer Veränderlicher durch, insbesondere nicht im Zusammenhang mit der Infinitesimalrechnung. Und nach meinem bescheidenen Hobbymathematiker-Wissen ist es gängige Konvention, den Differenzialquotienten im eindimensionalen Fall mit kleinen deutschen 'd' zu schreiben (was übrigens ja direkt auf die Leibniz'sche Logik: vor dem Grenzübergang: großer griechischer Buchstabe, nach dem Grenzübergang: der entsprechende deutsche Kleinbuchstabe, zurückgeht). Kurz und knapp: wenn schon ein Differenzialquotient, dann hier

[mm] \bruch{d}{dx}h(x)=\bruch{dy}{dx} [/mm]

Alles andere hieße, hier unnötig Verwirrung zu stiften, und das sollten wir hier unbedingt vermeiden.


Gruß, Diophant  

Bezug
                                        
Bezug
"Extremwertprobleme": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Sa 21.09.2013
Autor: Thomas_Aut


> Hallo Thomas_Aut,
>  
> > Hallo Diophant,
>  >
>  > > Hallo Thomas_Aut,

>  > >

>  > > hm, wozu hier:

>  > >

>  > > >

>  > > > [mm]\frac{ \partial h}{ \partial x}[/mm] oder anders h'

>  > bildest

>  > > und

>  > > > dies = 0 setzt.

>  > >

>  > > eine partielle Ableitung gut sein soll? Ein

> Tippfehler
>  > > kanns ja nicht sein, da du extra den betreffenden

>  > > LaTeX-Befehl verwendet hast?

>  > Nein das ist auch kein Tippfehler. Ich glaube es kann

>  > nicht schaden sich (auch schon zu Schulzeiten) mehrere

>  > Schreibweisen einzuprägen. Und auch wenn die Funktion

> nur
>  > von einer Variablen abhängt so ist diese Schreibweise

> ja
>  > dennoch o.k. - m.E. wesentlich übersichtlicher als das

> f',
>  > f'', f''' Zeug ;)

>  > >

>  
> Halten wir mal fest: in der Schule nimmt man in aller Regel
> keine Funktionen mehrerer Veränderlicher durch,
> insbesondere nicht im Zusammenhang mit der
> Infinitesimalrechnung. Und nach meinem bescheidenen
> Hobbymathematiker-Wissen ist es gängige Konvention, den
> Differenzialquotienten im eindimensionalen Fall mit kleinen
> deutschen 'd' zu schreiben (was übrigens ja direkt auf die
> Leibniz'sche Logik: vor dem Grenzübergang: großer
> griechischer Buchstabe, nach dem Grenzübergang: der
> entsprechende deutsche Kleinbuchstabe, zurückgeht). Kurz
> und knapp: wenn schon ein Differenzialquotient, dann hier
>  
> [mm]\bruch{d}{dx}h(x)=\bruch{dy}{dx}[/mm]

Ja die gängige Konvention ist es in diesem Fall ein "d" zu verwenden dennoch behaupte ich, dass diese Schreibweise nicht falsch ist (obwohl dies meist Geschmackssache ist) - hingegen: im mehrdimensionalen Fall ein "d" anstatt [mm] \partial [/mm] zu verwenden wäre, denke ich, ein Notationsfehler - das bleibt allerdings m.E. eine Spitzfindigkeit.

>  
> Alles andere hieße, hier unnötig Verwirrung zu stiften,
> und das sollten wir hier unbedingt vermeiden.
>  

Da gebe ich dir recht, Verwirrung zu stiften ist tatsächlich nicht Sinn und Zweck.
Anzumerken sei , dass ich mit der absolut gewöhnlichen "Schulschreibweise" den Rest meines Posts fortgefahren bin.

>
> Gruß, Diophant  

Gruß Thomas



Bezug
        
Bezug
"Extremwertprobleme": Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Sa 21.09.2013
Autor: abakus


> Gegeben sind f und g durch f(x)=0,5x²+2 und
> g(x)=x²-2x+2.
> Für welchen Wert x Element [0;4] wird die Summe der
> Funktionswerte extremal?
> Um welche Art von Extremum handelt es sich? Geben sie das
> Extremum an.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Hallo,
> wir haben ein paar Hausaufgaben aufbekommen und ich komme
> teilweise einfach nicht weiter, ich erwarte nich nur
> Lösungen, weningstens Lösungsansätze oder so.

>

> Also den Ansatz habe ich schon,denn es ensteht die neue
> Funktion :h(x)=1,5x²-2x+4

Gut. Das ist eine quadratische Funktion, deren Graph (weil 1,5 positiv ist) eine nach oben geöffnete Parabel ist. Der tiefste Punkt dieser Parabel ist der Scheitelpunkt.
Falls der im Intervall [0;4] liegt, hättest du schon mal das Minimum gefunden. Links und rechts davon werden die Funktionswerte größer und gehen eigentlich bis unendlich. Da dein Intervall aber links von 0 und rechts von 4 begrenzt ist, gibt es an einer der beiden Stellen den maximal möglichen Funktionswert.
Gruß Abakus

> Nun weiß ich aber nicht was es mit dem x Element [0;4]
> auf sich hat ,
> Und wie ich diesen Wert in meine Rechnung einbeziehen soll
> ??

>

> Wäre wirklich toll, wenn mir jemand weiterhelfen könnte
> mir fehlt die richtige Denkrichtung....

>

> Es wäre auch hilfreich wenn ich gesagt bekommen könnte um
> welche Art von Extrema es sich handelt .

>

> Würde mich sehr um Hilfe freuen .
> Danke schonmal.

Bezug
                
Bezug
"Extremwertprobleme": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Sa 21.09.2013
Autor: Whiterose

Ich bedanke mich schon mal rechtherzlich für die Tipps und werde sie in Ruhe jetzt mal durch rechnen .

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de