www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Faires Spiel
Faires Spiel < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faires Spiel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Sa 24.03.2012
Autor: Kater138

Hallo,
also ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich würde gerne wissen, ob es eine allgemeine Formel gibt, mit der man ein "faires Spiel" berechnen kann. Ich habe schon sämtliche Lexika und Mathebücher durchgesucht, und war auch schon fleißig am googeln, aber ich verstehe es einfach nicht.
Mein Mathelehrer rechnet das mit einer Variablen..
so à la (-a)*X(Wert)+(a-1)*X+(a-2)*X aber ich verstehe einfach nicht, wie man auf dieses a- irgendwas kommt..
Kann mir irgendjemand das vielleicht ganz allgemein erklären ??
Vielen Dank schonmal im Voraus..
Kater138

        
Bezug
Faires Spiel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 24.03.2012
Autor: Diophant

Hallo,

was du wssen bzw. lernen möchtest, ist nichts anderes und nichts weniger als der Erwartungswert einer Zufallsvariablen.

Der besitzt eine ganz klare Definition, die sich aber noch unterscheidet, je nachdem, ob die Zufallsvariable diskret (abzählbar) oder stetig ist.

Im diskreten Fall sieht die Definition so aus:

[mm] E(X)=x_1*P(x_1)+x_2*P(x_2)+...+x_n*P(x_n). [/mm]

Dabei sind die [mm] x_i [/mm] die Werte der Zufallsvariablen und [mm] P(x_i) [/mm] die Wahrscheinlichkeiten, mit der diese Werte angenommen werden. So ist bspw. der Erwartungswert für die Augenzahl beim einmaligen Werfen eines idealen Würfels gleich

[mm] E=\bruch{1}{6}*(1+2+3+4+5+6)=3.5 [/mm]

Um zu entscheiden, ob ein Spiel fair ist, führt man gerne die Zufallsvariable

X:=Einsatz-Gewinn

ein. Ist der Erwartungswert dieser Zufallsvariablen gleich Null, dann heißt das Spiel fair.


Gruß, Diophant

Bezug
        
Bezug
Faires Spiel: Beispiel
Status: (Frage) beantwortet Status 
Datum: 13:34 So 25.03.2012
Autor: Kater138

Aufgabe 1
Die Zufallsgröße X gibt den Gewinn in Euro bei einem Glücksspiel mit einem Einsatz von 1€ an.
-1      0        1      4
2/3   1/6    1/10  1/15

Ändern Sie die maximale Auszahlung so ab, dass das Spiel bei einem Einsatz von 1€ fair ist.

Aufgabe 2
Beim Würfelspiel "2&12" werden 2 Würfel gleichzeitig geworfen. Die Bank zahlt dem Spieler das Zehnfache der Augensumme in Cent aus, sofern diese 2 oder 12 ist. Bei der Augensumme 3 oder 11 das Fünffache und bei der Augensumme 4 oder 10 das Doppelte, sonst (5-9) die jeweilige Augensumme.

Welchen Einsatz muss die Bank mindestens verlangen, damit sie längerfristig keinen Verlust macht.

Erstmal vielen Dank.
Ich habe jetzt grob verstanden, wie das funktioniert.
Jedoch weiß ich bei Aufgabe 1 nicht, wie ich dies abändern soll.
Meine Notizen:
ich habe versucht, die jeweiligen Wahrscheinlichkeiten durch verschiedene Beträge zu rechnen, da das Spiel nur bei einem Einsatz von 70ct fair ist.
Frage: Ich habe dies so berechnet:
0 = (-a)*2/3 + (1-a)*1/6 + (a-2)*1/10 + (a-5)*1/15
=> dies stand so an der Tafel : aber warum muss ich z.b. a-5 rechnen wenn in der Aufgabe nur eine 4 steht ??

Auf jeden Fall habe ich versucht, die einzelnen WSK durch die Differenz des Einsatzes und des fairen Spiels zu rechnen (also den Faktor 3, 0,3, 30 ...) .. mein Erwartungswert nähert sich je mehr Nullen ich dranhänge null an, jedoch bezweifele ich, dass dies so richtig ist.

Zu Aufgabe 2
WSK 2/12 : 2/36
WSK 3 oder 11: 4/36
WSK 4 oder 10: 6/36
WSK REST : 24/36

Ich habe auch die einzelnen Gewinnsummen ausgerechnet, aber nun weiß ich doch nicht mehr weiter.

VIELEN DANK !!!!


Bezug
                
Bezug
Faires Spiel: Aufgabenteil 1
Status: (Antwort) fertig Status 
Datum: 01:21 Mo 26.03.2012
Autor: barsch

[willkommenmr]

Ich hatte heute schon einmal auf deine Frage antworten wollen, dann ist mein Rechner abgestürzt und der Text war weg. Jetzt will ich noch mal kurz darauf eingehen.

Zur 1. Aufgabe:

Betrachte einfach mal das Spiel an sich, ohne dass du irgendetwas änderst.



> Die Zufallsgröße X gibt den Gewinn in Euro bei einem
> Glücksspiel mit einem Einsatz von 1€ an.
> -1 0 1 4
> 2/3 1/6 1/10 1/15

Du setzt also 1 €. Das Spiel geht los.

Zu [mm]\bruch{2}{3}[/mm] verlierst du den 1 €. Das bedeutet, du bekommst nichts ausgezahlt, der 1 € wird einbehalten. Negativer Gewinn = Verlust = -1.

Zu [mm]\bruch{1}{6}[/mm] gewinnst du einen 1 €. Das heißt doch, du bekommst 2 € ausgezahlt. Nämlich deinen eingesetzten 1 € und den 1 € Gewinn. Denn dein Gewinn ist doch definiert als

Gewinn = Auszahlung - Einzahlung (Einsatz).

Das heißt Auszahlung = Einsatz + Gewinn.

Wenn dein Gewinn 4 € sind, bekommst du 5 € ausgezahlt - nämlich deinen Einsatz (1€) + Gewinn (4€).


So weit zum Verständnis. Weil du an späterer Stelle wissen willst, wo auf einmal die 5 herkommt.


Ist das Spiel fair? Berechne dazu den Erwartungswert:

[mm]E(X)=\bruch{2}{3}*(-1)+\bruch{1}{6}*0+\bruch{1}{10}*1+\bruch{1}{15}*4=...[/mm]

Nein, das Spiel ist nicht fair.

Wenn du jetzt ganz genau vorgehen willst, nimmst du Gewinn = Auszahlung - Einzahlung und dann wäre

[mm]E(X)=\bruch{2}{3}*(0-1)+\bruch{1}{6}*(1-1)+\bruch{1}{10}*(2-1)+\bruch{1}{15}*(5-1)=...[/mm]

Ergebnis ist in beiden Fällen gleich!
Das erklärt aber, warum unter Umständen in der Rechnung 5 € vorkommen, obwohl der Gewinn ja nur 4 € sind.


> Ändern Sie die maximale Auszahlung so ab, dass das Spiel
> bei einem Einsatz von 1€ fair ist.

So, das heißt jetzt in meinen Augen, dass du einzig an 4 € Gewinn ruckeln darfst, um das Spiel fair zu gestalten.

> durch verschiedene Beträge zu rechnen, da das Spiel nur
> bei einem Einsatz von 70ct fair ist.
> Frage: Ich habe dies so berechnet:

Selbst gerechnet, oder

> 0 = (-a)*2/3 + (1-a)*1/6 + (a-2)*1/10 + (a-5)*1/15
> => dies stand so an der Tafel : aber warum muss ich z.b.


von der Tafel abgeschrieben - das sind 2 verschiedene Sachen ;)

> a-5 rechnen wenn in der Aufgabe nur eine 4 steht ??

Hier ist auch insofern Vorsicht geboten, als das du einmal (1-a) und einmal (a-5) rechnest. Das führt unter Berücksichtigung der Vorzeichen unter Umständen zu falschen Lösungen.

Angenommen, du musst den Gewinn in Höhe von 4 € so anpassen, dass das Spiel fair wird, dann ergibt sich folgendes Bild:

> -1   0    1   4+a
> 2/3 1/6 1/10 1/15


Damit wäre der Wert von a so zu bestimmen, dass

[mm]E(X)=\bruch{2}{3}*(0-1)+\bruch{1}{6}*(1-1)+\bruch{1}{10}*(2-1)+\bruch{1}{15}*((5+a)-1)=\bruch{2}{3}*(-1)+\bruch{1}{6}*0+\bruch{1}{10}*1+\bruch{1}{15}*(4+a)=0[/mm]

bei einem Einsatz von weiterhin 1€.

Willst du aber jeden der Gewinne um den gleichen Betrag anheben, sodass das Spiel fair wird, so betrachte:


> -1+a   0+a   1+a  4+a
> 2/3   1/6   1/10  1/15


Dann ist a so bestimmen, dass

[mm]E(X)=\bruch{2}{3}*((0+a)-1)+\bruch{1}{6}*((1+a)-1)+\bruch{1}{10}*((2+a)-1)+\bruch{1}{15}*((5+a)-1)=0[/mm]

Ich hoffe, die Erklärung hilft dir weiter.

Gruß
barsch

Bezug
                
Bezug
Faires Spiel: Tipps zu 2.
Status: (Antwort) fertig Status 
Datum: 01:33 Mo 26.03.2012
Autor: barsch

Hi,

habe mir jetzt Aufgabenteil 2 durchgelesen. Hier musst du den Einsatz des Spieler bestimmen, sodass der erwartete Verlust der Bank 0 ist.

Der Verlust der Bank ist der Gewinn des Spielers. Also ist das nix anderes als eben. Wie ist der Einsatz zu wählen, sodass der erwartete Gewinn des Spielers 0 und das Spiel damit fair ist.

Wieder:

Gewinn = Auszahlung - Einsatz

Die Auszahlung ist für die einzelnen Ereignisse gegeben. Jetzt musst du den Einsatz a so bestimmen, dass E(X)=0.

So, und jetzt du...

Gruß
barsch

Bezug
                        
Bezug
Faires Spiel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Mo 26.03.2012
Autor: Kater138

Vielen Dank, ja ich wollte eigentlich schreiben von der Tafel abgeschrieben, aber ich hatte den kopf gestern etwas voll mit Geschichte :)
Jetzt ist mir alles klar geworden, nochmals danke, werde es gleich mal ausprobieren :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de