www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Faktorisierungsmethode von Fer
Faktorisierungsmethode von Fer < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisierungsmethode von Fer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Do 18.07.2013
Autor: ThomasTT

Ich lese immer sehr oft, dass bei der Faktorisierungsmethode von Fermat der Fall $n=3p$ der sogenannte "worst case" ist. Ich frage mich aber wieso das der Fall ist? Irgendwie überspringen alle Bücher, die ich zu dem Thema finde, diesen Schritt und beweisen diese Tatsache garnicht.

Über eine kleine Erläuterung wäre ich sehr dankbar.


        
Bezug
Faktorisierungsmethode von Fer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Do 18.07.2013
Autor: leduart

hallo
da das Verfahren etwa in der "Mitte" also bei [mm] \wurzel{3n} [/mm] anfängt, dauert es endlos, bis man bei dem faktor 3 ankommt, wenn n prim ist.
versuch mal nach fermat 30021 zu faktorisieren aber ohne zu benutzen , dass es ja durch 3 teilbar ist.
Gruss leduart

Bezug
                
Bezug
Faktorisierungsmethode von Fer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Do 18.07.2013
Autor: ThomasTT

Danker erstmal, doch meine Frage ist, gibt es dazu eine kleine mathematische Herleitung?

Einfach zu sagen "es dauert endlos wenn $n=3p$ für eine Primezahl $p$", ist ja nicht wirklich ein Beweis, sondern eine Beobachtung. :/

Bezug
                        
Bezug
Faktorisierungsmethode von Fer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Do 18.07.2013
Autor: leduart

hallo
wenn du eine grosse Zahl 3p hast dauert es ca [mm] \sqrt{n}-3 [/mm] Schritte, bis du bei 3 bist:
warum ist das kein "beweis"
Gruss leduart

Bezug
                                
Bezug
Faktorisierungsmethode von Fer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Do 18.07.2013
Autor: ThomasTT

Also meist startet man ja mit [mm] $x_0=\lceil\sqrt{n}\rceil$ [/mm] und geht dann alle Werte [mm] $x=x_0,\ x_0+1,\ x_0+2,\ \ldots$ [/mm] durch und prüft ob [mm] $\sqrt{x^2-n}$ [/mm] eine ganze Zahl ist.

Wenn nun $n=3p$ ist, dann ist [mm] $\sqrt{x^2-n}$ [/mm] erst eine ganze Zahl, wenn das letztmögliche [mm] $x=\lfloor\frac{n+9}{6}\rfloor$ [/mm] erreicht ist (z.B. laut Crandall's und Pomerance's Buch, Seite 226).

Doch wieso kann [mm] $\sqrt{x^2-n}$ [/mm] nie eine ganze Zahl sein bevor wir [mm] $x=\lfloor\frac{n+9}{6}\rfloor$ [/mm] erreichen und wo genau kommt diese Grenze her?

Bezug
                                        
Bezug
Faktorisierungsmethode von Fer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Do 18.07.2013
Autor: leduart

Hallo
wenn du Fermats Methode hinschreibst, und schon weisst ,dass ein Faktor  3 ist dann musst du doch auch dahin kommen? worst case gilt nur für 3p nicht wenn n zusammengesetzt ist.
Gruss leduart

Bezug
                                                
Bezug
Faktorisierungsmethode von Fer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Do 18.07.2013
Autor: ThomasTT

Es tut mir leid, ich sehe einfach nicht wie ich dahin komme (manchmal sieht man den Wald vor lauter Bäumen nicht). Daher versuche ich ja hier eine Antwort zu erhalten.

Bezug
                                                        
Bezug
Faktorisierungsmethode von Fer: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Do 18.07.2013
Autor: leduart

Hallo
dann versuch dich doch mal an meinem Beispiel, vielleicht fällt dann der Groschen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de