www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Faktormenge
Faktormenge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktormenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:26 Di 12.12.2006
Autor: darwin

Aufgabe
Seien [mm]G_1 = \left( \IZ/_{\left(6 \right)},+ \right)[/mm],[mm]G_1 = \left( \IZ/_{\left(4 \right)},+ \right)[/mm],[mm]G_1 = \left( \IZ/_{\left(3 \right)},+ \right)[/mm] Gruppen und [mm] \phi_{12} : G_1 \ni \left[ x \right]_{ \left( 6 \right)} \to \left[ x \right]_{\left(4 \right)}[/mm] und [mm]\phi_{13} : G_1 \ni \left[ x \right]_{ \left( 6 \right) } \to \left[ x \right]_{\left(3 \right)}[/mm].
Handelt es sich um Homomorphismen?

Guten Abend.

Ich kann mir unter diesen Faktomengen nichts vorstellen. Kann mir jemand an  der Gruppe [mm]G_1 = \left( \IZ/_{\left(6 \right)},+ \right)[/mm] erklären Was damit gemeint ist. Insbesondere kann ich mit der Formulierung "[mm] \IZ[/mm] faktorisiert nach [mm]\left(6 \right)[/mm] " nichts richtiges anfangen.
Bitte erkärt es mir.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktormenge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Di 12.12.2006
Autor: Hugo_Sanchez-Vicario

Halo Darwin,

[mm] \IZ/(6) [/mm] ist die zyklische Gruppe von der Ordnung 6. Viel öfter als in deiner Notation wird sie als [mm] \IZ/6\IZ [/mm] oder als [mm] \IZ_6 [/mm] geschrieben. Es bedeutet, dass man die ganzen Zahlen nur nach den Divisionsresten bei einer Division durch 6 unterscheidet.

Also ist dann 1+2=3 und 5+2=7=1, weil 7 geteilt durch 6 den Rest 1 hat.

Jetzt ist deine Aufgabe zu überprüfen, ob es einen Homomorphismus gibt, der für jedes Zahlenpaar (a,b) in [mm] \IZ_6 [/mm] die Summe a+b sinnvoll in den neuen Zahlbereich [mm] \IZ_4 [/mm] bzw. [mm] \IZ_3 [/mm] abbildet.

Ein kleiner Tip: einmal geht es und einmal nicht. Aber jetzt warte ich erst mal auf einen Vorschlag von dir. :-)

Hugo

Bezug
                
Bezug
Faktormenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Mi 13.12.2006
Autor: darwin

Bei [mm] \IZ_3 [/mm] liegt Hom. vor und bei [mm] \ZI_4 [/mm] nicht.

Vielen Dank hat mir sehr geholfen.

Bezug
                        
Bezug
Faktormenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Mi 13.12.2006
Autor: Hugo_Sanchez-Vicario

Genau,

denn z.B. ist [mm] 2\cdot2=4 [/mm] in [mm] \IZ_2. [/mm] Aber das ist in [mm] \IZ_4 [/mm] gleich Null, so dass es keinen Homomorphismus von [mm] \IZ_6 [/mm] nach [mm] \IZ_4 [/mm] gibt.

Nach [mm] \IZ_3 [/mm] gibt es einen Homomorphismus, nämlich
0->0
1->1
2->2
3->0
4->1
5->2

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de