www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Faktorring (MC)
Faktorring (MC) < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorring (MC): Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:29 Mi 05.05.2010
Autor: Schmetterfee

Aufgabe
Wo benutzt man bei der Bildung eines Quotientenringes R/I, dass I nicht nur ein Unterring (eventuell ohne 1) sondern ein idesl  ist?
(1) Bei der Definition der Menge R/I.
(2) Bei der Definition der Addition in R/I.
(3) Bei der Definition der Multiplikation in R/I.

Hallo,

ich bin mir bei meinen Überlegungen nicht ganz sicher und bitte um Anmerkungen.

Also ein Unterring bildet ja mit seinen Verknüpfungen wieder einen Ring, muss aber nicht unbedingt die 1 enthalten. Außerdem ist die Multiplikation bloß innerhalb des Unterringes definiert, nicht allgemein mit allen Elementen aus dem Ring.
Wohingegn die Multiplikation für Elemente mit Idealen allgemein mit Elementen aus dem Ring funktioniert.

(1) Hierbei würde ich sagen, dass es wir die Eigenschaft des ideals verwenden, weil der Kern eines Homomorphismus ein Ideal ist aber nicht unbedingt ein Unterring sein muss. Und von daher müsste man hier die Eigenschaft des Idesl nutzen.

(2) Hierbei macht es meiner Meinung nach auch keine Unterschied, weil die Definition des Faktorrings, wie für abelsche Gruppen definiert ist, d.h. sie ist additiv abgeschlossen und dies ist sowohl bei Unterringen als auch bei idealen der Fall.

(3) Hier würde ich sagen, dass man nutzt das I ein Ideal ist, weil die Multipliaktion allgemein für alle elemente des Ringes definiert wird und nicht nur für die Elemente die im Unterring enthalten sind.

Liege ich mit meinen Überlegungen richtig?..ich wäre über ein Feedback sehr dankbar...

LG Schmetterfee

        
Bezug
Faktorring (MC): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Do 06.05.2010
Autor: Schmetterfee

ich habe weiter an der aufgabe überlegt, habe auch mit vielen Kommillitonen gerdet und die mein nur 3 aber müsste es nicht auch 1 sein?..weil die Menge brauch doch auch ein neutrales Element der Multiplikation oder?
bin mir nur nicht sicher ob das jetzt ein Argument nur für 3 ist oder ob das auch für 1 reicht...

LG Schmetterfee

Bezug
                
Bezug
Faktorring (MC): Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Do 06.05.2010
Autor: SEcki


> ich habe weiter an der aufgabe überlegt, habe auch mit
> vielen Komunitonen

Ich kenne nur Kommilitonen. Woher stammt das Wort?

> gerdet und die mein nur 3 aber müsste
> es nicht auch 1 sein?..

Recht haben sie aber!

> weil die Menge brauch doch auch ein
> neutrales Element der Multiplikation oder?

Braucht sie (natürlich, steht schon in der Aufgabe!) nicht.

>  bin mir nur nicht sicher ob das jetzt ein Argument nur
> für 3 ist oder ob das auch für 1 reicht...

Schreibe für jeden Schritt mal die Definiton hin und was du verwendet hast für Def. im 1., 2., 3. Schritt.

SEcki

Bezug
                        
Bezug
Faktorring (MC): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Do 06.05.2010
Autor: Schmetterfee


>  
> >  bin mir nur nicht sicher ob das jetzt ein Argument nur

> > für 3 ist oder ob das auch für 1 reicht...
>  
> Schreibe für jeden Schritt mal die Definiton hin und was
> du verwendet hast für Def. im 1., 2., 3. Schritt.
>  

bei (1) ist ja R/I={a+I|a [mm] \ir [/mm] R} dabrauch ich also nicht das es ein Ideal ist sondern da würde es schon reichen das es ein Unterraum sprich Unterring ist

(2) (a+I)+(b+I)=(a+b)+I
Da reicht es auch das es sich um ein Untering handelt denn der bildet ja auch mit der Addition wieder ein Ring.

(3) (a+I)*(b+I)=a*b+I
Hier brauch ich die Eigenschaft das es ein Ideal ist, weil der Unterring nur für die Multiplikation abgeschlossen wäre wenn a und b aus dem Unterring kommen würden. Aber erst die Idealeigenschaft ermöglicht es, dass a*b wieder in I liegen

ist das soweit richtig?

LG Schmetterfee

Bezug
                                
Bezug
Faktorring (MC): Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 06.05.2010
Autor: SEcki


>  Hier brauch ich die Eigenschaft das es ein Ideal ist, weil
> der Unterring nur für die Multiplikation abgeschlossen
> wäre wenn a und b aus dem Unterring kommen würden. Aber
> erst die Idealeigenschaft ermöglicht es, dass a*b wieder
> in I liegen

Das tun sie nicht. Aber wenn [m][a]=[a'],[b]=[b'][/m], dann folgt [m][a*b]=[a'*b'][/m]. Es geht nur 3 die Idealeigenschaft ein, um die Unabh. vom Repräsentanten zu zeigen.

SEcki

Bezug
                                        
Bezug
Faktorring (MC): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Do 06.05.2010
Autor: Schmetterfee

danke für die Erklärung das werd ich mir nochmal klar machen.

LG Schmetterfee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de