www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Faltung
Faltung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung: Assoziativität...
Status: (Frage) beantwortet Status 
Datum: 19:11 Mi 06.04.2005
Autor: Bastiane

Hallo nochmal!
Ich habe gerade versucht, die Assoziativität der Faltung zu zeigen. Das ist sicher ganz einfach, aber irgendwie bekomme ich das nicht hin.

Also: zu zeigen ist: [mm] f\*(g\*h)=(f\*g)\*h [/mm]

Ich habe schon aufgeschrieben:
[mm] f\*(g\*h)(x) [/mm] = [mm] \integral{f(y)(g\*h)(x-y)dy} [/mm] = [mm] \integral{f(y)\integral{g(z)h(x-y-z)dz}\;dy} [/mm]
und
[mm] (f\*g)\*h(x) [/mm] = [mm] \integral{(f\*g)(y)h(x-y)dy} [/mm] = [mm] \integral{\integral{f(z)g(y-z)dz}\;h(x-y)dy} [/mm]

So, und jetzt muss man da irgendwie was ersetzen, so was wie a=x-y oder so, ich weiß nur nicht genau, wie und überhaupt. Könnte mir das jemand kurz sagen?

Viele Grüße
Bastiane
[banane]


        
Bezug
Faltung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mi 06.04.2005
Autor: Stefan

Liebe Christiane!

> Also: zu zeigen ist: [mm]f\*(g\*h)=(f\*g)\*h[/mm]
>  
> Ich habe schon aufgeschrieben:
>  [mm]f\*(g\*h)(x)[/mm] = [mm]\integral{f(y)(g\*h)(x-y)dy}[/mm] =
> [mm]\integral{f(y)\integral{g(z)h(x-y-z)dz}\;dy}[/mm]
>  und
>  [mm](f\*g)\*h(x)[/mm] = [mm]\integral{(f\*g)(y)h(x-y)dy}[/mm] =
> [mm]\integral{\integral{f(z)g(y-z)dz}\;h(x-y)dy}[/mm]
>  
> So, und jetzt muss man da irgendwie was ersetzen, so was
> wie a=x-y oder so, ich weiß nur nicht genau, wie und
> überhaupt. Könnte mir das jemand kurz sagen?

>  [mm]f\*(g\*h)(x)[/mm] = [mm]\integral{f(y)(g\*h)(x-y)dy}[/mm] =
> [mm]\integral{f(y)\integral{g(z)h(x-y-z)dz}\;dy}[/mm]

Erst einmal benennen wir $y$ in $z$ und $z$ in $y$ um (das ist natürlich erlaubt, es sind ja nur Variablen) und erhalten

[mm]\integral{f(y)\integral{g(z)h(x-y-z)dz}\;dy} = \integral{f(z)\integral{g(y)h(x-z-y)dy}\;dz} [/mm].

So, und jetzt liefert die Transformation $y [mm] \mapsto [/mm] y-z$ im inneren Integral (beachte, dass die Determinante der entsprechenden Jacobimatrix gleich $1$ ist und daher hier keine Rolle spielt):

[mm]\integral{f(z)\integral{g(y)h(x-z-y)dy}\;dz} = \integral{f(z)\integral{g(y-z)h(x-y)dy}\;dz}[/mm].

So, und jetzt brauchen wir nur noch den Satz von Fubini anzuwenden:

[mm]\integral{f(z)\integral{g(y-z)h(x-y)dy}\;dz} = \integral{\integral{f(z)g(y-z)dz}\;h(x-y)dy}[/mm].

Liebe Grüße
Stefan


Bezug
                
Bezug
Faltung: Distributivität
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 06.04.2005
Autor: Bastiane

Lieber Stefan!
Danke - das ist soweit glaube ich klar.
Jetzt habe ich es mal mit der Distributivität versucht:

[mm] f\*(g+h)(x) [/mm] = [mm] \integral{f(y)(g+h)(x-y)dy} [/mm]
und
[mm] (f\* g)(x)+(f\*h)(x) [/mm] = [mm] \integral{f(y)g(x-y)dy}+\integral{f(y)h(x-y)dy} [/mm] = [mm] \integral{f(y)(g(x-y)+h(x-y))dy} [/mm]

Ist das jetzt schon direkt das Gleiche?

Viele Grüße
Christiane
[cap]


Bezug
                        
Bezug
Faltung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mi 06.04.2005
Autor: Stefan

Liebe Christiane!

Kurze Antwort: Ja. [ok]

Denn für alle $z [mm] \in \IR^d$ [/mm] gilt ja:

$(g+h)(z) = g(z) +h(z)$

nach Definition (von $g+h$).

Und hier ist $z=x-y$.

Liebe Grüße
Stefan

Bezug
                                
Bezug
Faltung: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Mi 06.04.2005
Autor: Bastiane

Lieber Stefan!

> Kurze Antwort: Ja. [ok]

Kurze Mitteilung: Danke. :-) [sunny]

Viele Grüße
Christiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de