www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Faltung diskreter Verteilungen
Faltung diskreter Verteilungen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung diskreter Verteilungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:11 Fr 18.05.2007
Autor: zerocool

Aufgabe 1
Seien X, Y zwei unabhängige, diskrete Zufallsvariablen über einem Wahrscheinlichkeitsraum [mm] (\Omega, \mathcal{A}, [/mm] P) mit Werten in [mm] \IZ. [/mm] Zeigen Sie:

     [mm] \forall [/mm] k [mm] \in \IZ [/mm] : P({X + Y = k}) = [mm] \summe_{l \in \IZ}^{}P({X = l})\*P({Y = k - l}). [/mm]

Bemerkung: Dieser Zusammenhang wird als Faltung bezeichnet.

Aufgabe 2
Seien X, Y zwei unabhängige, diskrete Zufallsvariablen über einem Wahrscheinlichkeitsraum ( [mm] \Omega, \mathcal{A}, [/mm] P) mit Werten in [mm] \IZ [/mm] . Zeigen Sie:

[mm] \forall [/mm] k [mm] \in \IZ [/mm] : P({X + Y = k}) = [mm] \summe_{l \in \IZ } [/mm] P({X = [mm] l})\*P({Y = k - l}) [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Ich habe folgendes geizeigt:

Wir haben:

        X, Y : [mm] \Omega \mapsto \IZ [/mm]

        X, Y unabhängig [mm] \gdw P({X=x}\cap{Y=y})=P({X=x})\*P({Y=y}) [/mm]

       X, Y diskret [mm] \gdw \Omega [/mm] endlich oder abzählbar unendlich und
                                    [mm] \summe_{i \in \IZ}^{}P({X = i}) [/mm] = 1
                                    [mm] \summe_{i \in \IZ}^{}P({Y = i}) [/mm] = 1

Dann:

       [mm] \summe_{l \in \IZ}^{}P({X=l}) [/mm] = 1 = [mm] \summe_{k \in \IZ}^{}P({X + Y = k}) [/mm] = [mm] \summe_{k \in \IZ}^{}P({l + Y = k}) [/mm]

       = [mm] \summe_{k \in \IZ}^{}P({Y = k - l}) [/mm]

Ich habe auch bemerkt, dass

          X + Y = k      [mm] \gdw [/mm]     X = 0 und Y = k
                                           oder
                                           X = 1 und Y = k - 1
                                           oder
                                           .
                                           .
                                           .
                                           oder
                                           X = k und Y = 0

Wie kann ich weitergehen? Bitte geben Sie mir einen Tipp.

        
Bezug
Faltung diskreter Verteilungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Fr 18.05.2007
Autor: wauwau

ich würde das anders argumentiern

[mm]\{x,y \in \Omega | x+y=k\}=\bigcup_{l \in \IZ}^{}\{x,y \in \Omega | x=l , y=k-l\} = \bigcup_{l \in \IZ}^{}\{x \in \Omega | x=l \} \cap \{y \in \Omega | y=k-l\} [/mm]

wendest du nun das (Wahrscheinlichkeits) Maß auf diese Mengengleichen an, ergibt dies , da unabhängige Variablen vorausgesetzt wurden und die vorkommenden Mengen disjunkt sind, das gewünschte ergebnis

Bezug
                
Bezug
Faltung diskreter Verteilungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Fr 18.05.2007
Autor: zerocool

Danke für deine Antwort. Aber ich möchte eine Frage stellen:

Du hast geschrieben:

     P({x,y [mm] \in \Omega [/mm] : x+y=k})

und hier, es geht um

     P({w [mm] \in \Omega [/mm] : X(w) + Y(w) = k}) , wobei k [mm] \in \IZ [/mm]

und
        X(w) : [mm] \Omega [/mm] -> [mm] \IZ [/mm]
        Y(w) : [mm] \Omega [/mm] -> [mm] \IZ [/mm]
d.h sind Abbildungen

Warum betrachtest du x,y [mm] \in \Omega [/mm] und x+y = k, wobei k [mm] \in \IZ [/mm] ?
Meinst du, dass [mm] \Omega \subseteq \IZ? [/mm]

Bezug
                        
Bezug
Faltung diskreter Verteilungen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 18.05.2007
Autor: zerocool

Für : wauwau

Jetzt verstehe ich :

{ [mm] \omega \in \Omega [/mm] | [mm] X(\omega) [/mm] + [mm] Y(\omega) [/mm] = k } =
         [mm] \bigcup_{l \in \IZ}^{} [/mm] { [mm] \omega \in \Omega [/mm] | [mm] X(\omega) [/mm] = l, [mm] Y(\omega) [/mm] = k - l } =
         [mm] \bigcup_{l \in \IZ}^{} [/mm] { [mm] \omega \in \Omega [/mm] | [mm] X(\omega) [/mm] = l } [mm] \cap [/mm] { [mm] \omega \in \Omega [/mm] | [mm] Y(\omega) [/mm] = k - l }

Da { [mm] \omega \in \Omega [/mm] | [mm] X(\omega) [/mm] = l } und { [mm] \omega \in \Omega [/mm] | [mm] Y(\omega) [/mm] = k - l } paarweise disjunkt sind und
wir können die [mm] \sigma [/mm] - Additivität des Wahrscheinlichkeitsmaßes anwenden.

Jetzt macht alles Sinn. Vielen, vielen dank für die Hilfe!

Bezug
                        
Bezug
Faltung diskreter Verteilungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Sa 19.05.2007
Autor: wauwau

Sehr richtig - ich war etwas schlampig in meiner Skizze...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de