www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Faltungssatz
Faltungssatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mo 02.01.2012
Autor: David90

Aufgabe
Berechnen Sie für a,b [mm] \in \IR [/mm] die Faltung [mm] (u_{0}(t)e^{at}\*(u_{0}(t)cosbt) [/mm] mit Hilfe der Laplacetransformation.

Hallo, ich weiß nicht wie ich bei der Aufgabe anfangen soll. Hab den Faltungssatz im Tutorium nicht ganz verstanden :/
Also auf jeden Fall gilt:
[mm] L[u_{0}(t)e^{at}\*u_{0}(t)cosbt](s)=L[u_{0}(t)e^{at}](s)*L[u_{0}(t)cosbt](s) [/mm] oder?
Dann würd ich den Dämpfungssatz anwenden, also:
[mm] L[u_{0}(t)](s-a)*L[u_{0}](s)*\bruch{s}{s^2+b^2} [/mm]
Bin mir aber nicht sicher...kann mir jemand helfen?
Gruß David

        
Bezug
Faltungssatz: Multiplikation
Status: (Antwort) fertig Status 
Datum: 18:39 Mo 02.01.2012
Autor: Infinit

Hallo David90,
das ist doch okay, die Faltung im Zeitbereich führt zu einer Multiplikation im Laplacebereich und für [mm] L(u_0(t)) [/mm] kannst Du einfach [mm] U_0(s) [/mm] schreiben.
Viele Grüßr,
Infinit


Bezug
                
Bezug
Faltungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mo 02.01.2012
Autor: David90

Ok wenn ich jetzt das [mm] U_{0}(s) [/mm] benutze, steht dann da:
[mm] U_{0}(s-a)*U_{0}(s)*\bruch{s}{s^2+b^2}? [/mm]
Gruß David

Bezug
                        
Bezug
Faltungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Di 03.01.2012
Autor: David90

würd schon gern wissen wie man weiter macht^^ kann ja in der klausur rankommen^^
Wär cool wenn mir einer helfen könnte^^
Gruß David

Bezug
                                
Bezug
Faltungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Di 03.01.2012
Autor: MathePower

Hallo  David90,

> würd schon gern wissen wie man weiter macht^^ kann ja in
> der klausur rankommen^^
>  Wär cool wenn mir einer helfen könnte^^


Siehe dazu diesen Artikel.


>  Gruß David


Gruss
MathePower

Bezug
                        
Bezug
Faltungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Di 03.01.2012
Autor: MathePower

Hallo David90,

> Ok wenn ich jetzt das [mm]U_{0}(s)[/mm] benutze, steht dann da:
>  [mm]U_{0}(s-a)*U_{0}(s)*\bruch{s}{s^2+b^2}?[/mm]


Der erste Faktor stimmt.

Für den/die weiteren Faktor(en) sieh Dir die []Cosinus-Multiplikation an.


>  Gruß David


Gruss
MathePower

Bezug
                                
Bezug
Faltungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Di 03.01.2012
Autor: David90

Also muss man das mit komplexen zahlen machen oder was?
Dann steht da:
[mm] U_{0}(s-a)*\bruch{1}{2}*(U_{0}(s-ib)+U_{0}(s+ib)) [/mm] oder?
Ist die Aufgabe jetzt gelöst?
Gruß David

Bezug
                                        
Bezug
Faltungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Di 03.01.2012
Autor: MathePower

Hallo David90,

> Also muss man das mit komplexen zahlen machen oder was?
>  Dann steht da:
>  [mm]U_{0}(s-a)*\bruch{1}{2}*(U_{0}(s-ib)+U_{0}(s+ib))[/mm] oder?
>  Ist die Aufgabe jetzt gelöst?


Ja. [ok]


>  Gruß David


Gruss
MathePower

Bezug
                                                
Bezug
Faltungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Di 03.01.2012
Autor: David90

Ach echt? Das ist jetzt also die Faltung von für a und b ja?:)
Gruß David

Bezug
                                                        
Bezug
Faltungssatz: Modulation
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 04.01.2012
Autor: Infinit

Ja, in diesem Falle ging es so einfach. Der zweite Term entspricht der Amplitudenmodulation eines Cosinusträgers mit Deinem Signal [mm] u_o (t) [/mm] und hier entstehen oberes und unteres Seitenband.
Viele Grüße,
Infinit


Bezug
        
Bezug
Faltungssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Mi 04.01.2012
Autor: kozlak


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de