www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Familie von Mengen 4
Familie von Mengen 4 < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Familie von Mengen 4: Potenzmenge
Status: (Frage) beantwortet Status 
Datum: 15:04 Fr 19.04.2013
Autor: ne1

Aufgabe
Zeige $A [mm] \subseteq \bigcup [/mm] P(A)$.

Sei $x [mm] \in [/mm] A$. Aus der Definition der Potenzmenge wissen wir auch, dass $A [mm] \in [/mm] P(A)$. $x$ ist also ein Element einer Teilmenge der Menge $A$. Aus der Definition der Vereinigung wissen wir also, dass $x [mm] \in \bigcup [/mm] P(A)$.

        
Bezug
Familie von Mengen 4: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Fr 19.04.2013
Autor: luis52


> Zeige [mm]A \subseteq \bigcup P(A)[/mm].
>  Sei [mm]x \in A[/mm]. Aus der
> Definition der Potenzmenge wissen wir auch, dass [mm]A \in P(A)[/mm].
> [mm]x[/mm] ist also ein Element einer Teilmenge der Menge [mm]A[/mm]. Aus der
> Definition der Vereinigung wissen wir also, dass [mm]x \in \bigcup P(A)[/mm].

Alles [ok]. Und wo ist die Frage?

Uebrigens: Es gilt sogar [mm]A= \bigcup P(A)[/mm] ! Boah. ;-)

vg Luis

Bezug
                
Bezug
Familie von Mengen 4: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Fr 19.04.2013
Autor: ne1


> > Zeige [mm]A \subseteq \bigcup P(A)[/mm].
>  >  Sei [mm]x \in A[/mm]. Aus der
> > Definition der Potenzmenge wissen wir auch, dass [mm]A \in P(A)[/mm].
> > [mm]x[/mm] ist also ein Element einer Teilmenge der Menge [mm]A[/mm]. Aus der
> > Definition der Vereinigung wissen wir also, dass [mm]x \in \bigcup P(A)[/mm].
>
> Alles [ok]. Und wo ist die Frage?

Diesmal keine Frage ;). Ich wollte nur wissen, ob mein Beweis stimmt.
  

> Uebrigens: Es gilt sogar [mm]A= \bigcup P(A)[/mm] ! Boah. ;-)
>  
> vg Luis

Ja, das war auch meine Aufgabe. Da ich aber [mm] $\supseteq$ [/mm] schon bewiesen habe (und sicher war, dass mein Beweis stimmt), habe ich den Teil weggelassen :).

Bezug
        
Bezug
Familie von Mengen 4: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Fr 19.04.2013
Autor: Marcel

Hallo,

> Zeige [mm]A \subseteq \bigcup P(A)[/mm].
>  Sei [mm]x \in A[/mm]. Aus der
> Definition der Potenzmenge wissen wir auch, dass [mm]A \in P(A)[/mm].
> [mm]x[/mm] ist also ein Element einer Teilmenge der Menge [mm]A[/mm].

okay, man kann wenigstens zwei Elemente $E [mm] \in P(A)\,$ [/mm] mit $x [mm] \in [/mm] E$ konkret angeben!
Du hast hier [mm] $E=A\,$ [/mm] gewählt, ich nehme ein anderes naheliegendes Element!

> Aus der
> Definition der Vereinigung wissen wir also, dass [mm]x \in \bigcup P(A)[/mm].

Behaupten wir mal Gleichheit und beweisen dies, im Primzip hast Du ja [mm] "$\subseteq$" [/mm] auch
schon bewiesen. Macht aber nichts, ich hab' da halt meinen eigenen Stil,
und das kannst Du dann vergleichen:


[mm] "$\subseteq$" [/mm] Sei $x [mm] \in A\,.$ [/mm] Dann ist [mm] $\{x\} \subseteq [/mm] A$ und daher [mm] $\{x\} \in P(A)\,.$ [/mm] Es folgt wegen
[mm] $$\bigcup P(A)=\bigcup_{M \in P(A)}M=\bigcup_{M \subseteq A}M$$ [/mm]
daher $x [mm] \in \bigcup P(A)\,.$ [/mm]


[mm] "$\supseteq$" [/mm] Sei $x [mm] \in \bigcup P(A)\,.$ [/mm] Wegen
[mm] $$\bigcup P(A)=\bigcup_{M \in P(A)}M$$ [/mm]
existiert ein $M [mm] \in P(A)\,$ [/mm] mit $x [mm] \in M\,,$ [/mm] also folgt
$$x [mm] \in [/mm] M [mm] \subseteq A\,,$$ [/mm]
also
$$x [mm] \in A\,.$$ [/mm]
(Etwas allgemeiner kann man auch zeigen: Sind [mm] $A_i \in P(A)\,$ [/mm] für alle
$i [mm] \in [/mm] I$ für eine Indexmenge [mm] $I\,,$ [/mm] so folgt
[mm] $$\left(\bigcup_{i \in I}A_i\right) \subseteq [/mm] A$$
bzw.

    [mm] $\left(\bigcup_{i \in I}A_i\right) \in P(A)\,.$ [/mm]

Grob gesagt: Vereinigt man Mengen, die alle Teilmengen einer Menge [mm] $A\,$ [/mm]
sind, so ist auch diese Vereinigung wieder eine Teilmenge von [mm] $A\,,$ [/mm] bzw. sie
ist ein Element von [mm] $P(A)\,.$) [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de