www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Familie von Untervektorräumen
Familie von Untervektorräumen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Familie von Untervektorräumen: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:22 So 08.12.2013
Autor: karaman

Aufgabe
Sei [mm] (X_{1}, [/mm] ..., [mm] X_{r}) [/mm] eine Familie von Untervektorräumen des R-Vektorraums W. Zu zeigen:

[mm] dim(X_{1}+ [/mm] ... [mm] +X_{r})= \summe_{i=1}^{r}dimX_{i} [/mm] - [mm] \summe_{i=1}^{r-1}dim((X_{1}+ [/mm] ... [mm] +X_{i})) \cap X_{i+1}) [/mm]

Hallo zusammen,


ehrlich gesagt habe ich keine Ahnung wie ich vorgehen sollte.



Ich denke, [mm] dim(X_{1}+ [/mm] ... [mm] +X_{r}) [/mm] = max{dim [mm] X_{i} [/mm] | i von 1 bis r}

Ich habe auch den Satz so umgeformt:

[mm] dim(X_{1}+ [/mm] ... [mm] +X_{r})= \summe_{i=1}^{r-1}(dimX_{i} [/mm] - [mm] dim((X_{1}+ [/mm] ... [mm] +X_{i})) \cap X_{i+1}) [/mm] + dim [mm] X_{r} [/mm]

Eine spontane (vermutlich falsche) Idee war, eine bijektive Abbildung zu definieren, die als Umordnung der Familie dient, so dass [mm] X_{f1} \le X_{f2} \le [/mm] ... [mm] \le X_{fr} [/mm] ...Dann sollte

[mm] \summe_{i=1}^{r-1}(dimX_{fi} [/mm] - [mm] dim((X_{f1}+ [/mm] ... [mm] +X_{fi})) \cap X_{f(i+1)}) [/mm] = 0  gelten; D.h.

[mm] dimX_{fi} [/mm] = [mm] dim((X_{f1}+ [/mm] ... [mm] +X_{fi})) \cap X_{f(i+1)} [/mm]

[mm] dimX_{fi} [/mm] = dim( [mm] X_{fi} \cap X_{f(i+1)} [/mm] )

woher ich denke, dass diese Lösung falsch ist.


Ich habe [mm] X_{i} [/mm] auch als affine Teilräume  , die transversal schneiden betrachtet , hat mir jedoch wenig geholfen.


Meine konkrete Frage ist, wie ich   [mm] dim((X_{1}+ [/mm] ... [mm] +X_{i})) \cap X_{i+1}) [/mm]   bearbeite. Außerdem sind alle Hinweise willkommen.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Familie von Untervektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 So 08.12.2013
Autor: UniversellesObjekt

Hallo karaman,

Betrachte zunächst den Fall $ r=2 $. Entweder ihr hattet diesen in der Vorlesung oder du beweist ihn selber.
In jedem Fall dient sie dir als Induktionsanfang für Induktion nach $ r $. Der Induktionsschluss ist danach rein technischer Natur.

Liebe Grüße,
UniverselllesObjekt

Bezug
                
Bezug
Familie von Untervektorräumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:05 Mo 09.12.2013
Autor: karaman

Das war deutlich einfacher als ich gedacht habe.

Vielen Dank, UniverselllesObjekt  !



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de