Fast sichere Konvergenz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:45 So 11.12.2011 | Autor: | Teufel |
Aufgabe | Zeige: Ist [mm] (X_n)_{n \in \IN} [/mm] eine unabhängige Folge identisch verteilter Zufallsvariablen mit [mm] \frac{1}{n}(X_1+..+X_n) \to [/mm] Y fast sicher für eine Zufallsvariable Y, so ist [mm] X_1 \in \mathcal{L}^1(P) [/mm] und [mm] Y=E(X_1) [/mm] fast sicher. |
Hi!
Ok, also falls [mm] X_1 \in \mathcal{L}^1(P), [/mm] dann folgt die 2. Aussage ja schon, da die Folge dem starken Gesetz der großen Zahlen genügt und damit [mm] \frac{1}{n}(X_1+..+X_n) [/mm] gegen [mm] E(X_1) [/mm] geht fast sicher.
Bleibt nur [mm] X_1 \in \mathcal{L}^1(P) [/mm] zu zeigen. Dazu sollten wir zuerst zeigen, dass [mm] $X_1 \in \mathcal{L}^1(P) \gdw P(|X_n|>n \text{ für unendlich viele n})=0$ [/mm] gilt, was ich auch getan habe.
Also muss ich nun zeigen, dass [mm] $P(|X_n|>n \text{ für unendlich viele n})=0$ [/mm] gilt. Aber ich weiß nicht, wie man das vernünftig machen kann.
Weiß da jemand weiter?
|
|
|
|
> Zeige: Ist [mm](X_n)_{n \in \IN}[/mm] eine unabhängige Folge
> identisch verteilter Zufallsvariablen mit
> [mm]\frac{1}{n}(X_1+..+X_n) \to[/mm] Y fast sicher für eine
> Zufallsvariable Y, so ist [mm]X_1 \in \mathcal{L}^1(P)[/mm] und
> [mm]Y=E(X_1)[/mm] fast sicher.
> Hi!
>
> Ok, also falls [mm]X_1 \in \mathcal{L}^1(P),[/mm] dann folgt die 2.
> Aussage ja schon, da die Folge dem starken Gesetz der
> großen Zahlen genügt und damit [mm]\frac{1}{n}(X_1+..+X_n)[/mm]
> gegen [mm]E(X_1)[/mm] geht fast sicher.
>
> Bleibt nur [mm]X_1 \in \mathcal{L}^1(P)[/mm] zu zeigen. Dazu sollten
> wir zuerst zeigen, dass [mm]X_1 \in \mathcal{L}^1(P) \gdw P(|X_n|>n \text{ für unendlich viele n})=0[/mm]
> gilt, was ich auch getan habe.
>
> Also muss ich nun zeigen, dass [mm]P(|X_n|>n \text{ für unendlich viele n})=0[/mm]
> gilt. Aber ich weiß nicht, wie man das vernünftig machen
> kann.
>
> Weiß da jemand weiter?
Wenn für festes [mm] \omega [/mm] gilt [mm] |X_n|>n [/mm] für unendlich viele n, dann kann die Folge [mm] (\bar{X_n}) [/mm] mit
[mm] \bar{X_n}=\frac{1}{n}(X_1+..+X_n) [/mm]
nicht konvergieren (man kann abschätzen, dass sie dann keine Cauchy-Folge sein kann)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:41 Mo 12.12.2011 | Autor: | Teufel |
Hi!
Ok, ich habe da jetzt eine Weile rumgerechnet, aber irgendwie bin ich auf keinen grünen Zweig gekommen.
Sei also [mm] \omega [/mm] so ein element, für das unedlich viele [mm] |X_n(\omega)|>n [/mm] sind. Bezeichne [mm] x_n:=X_n(\omega). [/mm]
Zu zeigen: [mm] $\exists \varepsilon>0: \forall [/mm] N [mm] \in \IN [/mm] : [mm] \exists [/mm] m>n>N: [mm] |\frac{1}{m}*(x_1+...+x_m)-\frac{1}{n}*(x_1+...+x_n)| \ge \varepsilon$
[/mm]
Ok, nun muss ich wohl einbauen, dass [mm] |x_i|>i [/mm] ist für unendlich viele i, also dass es auch hinter dem N noch i gibt mit [mm] |x_i|>i. [/mm] Ich habe dann versucht mit Dreiecksungleichungen rumzuhantieren und wollte als n oder m eben solch einen Index i nehmen, mit [mm] |x_i|>i. [/mm] Aber irgendwie bekomme ich es nicht hin zu zeigen, das das immer [mm] $\ge \varepsilon$ [/mm] für ein geeignetes [mm] \varepsilon [/mm] ist.
Weiß da jemand weiter?
|
|
|
|
|
Hallo Teufel!
Sei [mm] a_n=\frac{1}{n}\sum_{i=1}^n x_i.
[/mm]
Angenommen, diese Folge konvergiert. Wir nennen den Grenzwert a.
Dann gibt es ein [mm] n_0\in\IN, [/mm] sodass für alle [mm] n\ge n_0 [/mm] gilt
(*) [mm] |a_n|\leq\frac{3|a|}{2}.
[/mm]
Für [mm] n\in\IN [/mm] gilt nun
[mm] |a_{n+1}-a_n|=\left|\frac{1}{n+1}\sum_{i=1}^{n+1}x_i-\frac{1}{n}\sum_{i=1}^n x_i\right|=\ldots=\left|\frac{x_{n+1}}{n+1}-\frac{a_n}{n+1}\right|,
[/mm]
dies kann man, wenn man weiterhin fordert [mm] x_{n+1}>n+1, n\ge n_0, [/mm] abschätzen.
[mm] \left|\frac{x_{n+1}}{n+1}-\frac{a_n}{n+1}\right|\geq\frac{|x_{n+1}|}{n+1}-\frac{|a_n|}{n+1}\ge1-\frac{2a}{3(n+1)}\to1,n\to\infty
[/mm]
Die erste Ungleichung folgt wegen [mm] |a|=|a-b+b|\le|a-b|+|b| [/mm] für [mm] a,b\in\IR.
[/mm]
Hier ist die Konvergenz [mm] "n\to\infty" [/mm] in dem Sinne zu verstehen, dass man eigentlich eine Teilfolge von [mm] a_n [/mm] betrachten müsste, nämlich die [mm] a_n [/mm] mit [mm] x_{n+1}>n+1.
[/mm]
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:59 Di 13.12.2011 | Autor: | Teufel |
Hi!
Vielen Dank mal wieder. ;)
Das leuchtet ein. Wäre ich wohl selbst nie drauf gekommen. Ich muss mal wieder etwas mehr mit Abschätzungen rumspielen, fürchte ich.
|
|
|
|