www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Fehler 2. Art berechnen
Fehler 2. Art berechnen < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehler 2. Art berechnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:39 Do 09.02.2012
Autor: sh4nks

Aufgabe
Ab T > 53,2 wird H Null (Varianz höchstens 40) bei einem Chi- Quadrat- Test für Varianz verworfen.
Stichprobenlänge n= 35, Erwartungswert 500, Varianz 55.

Wie berechnet man (mit Normalapproximation) den Fehler 2. Art?

Ich bin komm nicht drauf, wie man das Problem formal beschreiben muss. Die Bedingung ist ja, dass die Testgröße kleiner gleich der Ablehnungsschranke 53,2 ist. Aber wie beschreibe ich das Problem genau bzw. löse ich die Aufgabe?

Gruß, Markus

        
Bezug
Fehler 2. Art berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Do 09.02.2012
Autor: Walde

Hi Markus,

ein Fehler 2. Art findet ja statt, wenn [mm] H_0 [/mm] angenommen wird, d.h. die Teststatistik im Annahmebereich landet, obwohl [mm] H_0 [/mm] nicht zutrifft. Hier ist, wie du schon festgestellt hast, [mm] P(T\le [/mm] 53,2) gesucht, aber unter der Bedingung, dass [mm] H_1: \sigma^2=55 [/mm] zutrifft. Um die W'keit zu bestimmen, muß man wissen, wie T unter [mm] H_1 [/mm] jetzt verteilt ist (um dann zB in einer entsprechenden Tabelle nachzukucken). Hier sollst du die W'keit dann mit der Standardnormalverteilung approximieren.

Allerdings ist mir leider grad selbst nicht ganz klar, warum hier der Erwartungswert mit 500 angegeben ist. Ich dachte bei einem [mm] \chi^2- [/mm] Test ist die Teststatistik (unter [mm] H_0) [/mm] auch [mm] \chi^2 [/mm] verteilt. Dann müsste aber doch der Erwartungswert bei E(T)=n liegen (unter [mm] H_0), [/mm] der Anzahl der Freiheitsgrade, oder? Soll man das unter [mm] H_1 [/mm] nun mit 500 ansetzen, ich bin ebenfalls verwirrt, deswegen bleibt die Frage mal unbeantortet.

EDIT: Kann es sein, dass du hier nur einen Teil der Aufgabe gepostet hast und den Erwartungswert 500 für einen anderen Aufgabenteil brauchst oder halt generell noch mehr zur Aufgabe sagen kannst?

Lg walde

Bezug
                
Bezug
Fehler 2. Art berechnen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:32 Fr 10.02.2012
Autor: sh4nks

Hi,

danke erstmal. Soweit war mir das grob schon klar, aber ich weiß nicht, wie ich den Ausdruck T<53,2 so umforme, dass ich in einer Tabelle für Standardnormalverteilungen nachschlagen kann. T=s²/sigma², sigma² rüberbringen und dann irgendwie auf N(0,1) normieren? Oder ganz anders?

Bezug
                        
Bezug
Fehler 2. Art berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Fr 10.02.2012
Autor: Walde

Hi Markus,

sei nicht so sparsam mit den Info's über die Aufgabe. Mir zumindest würde das glaube ich helfen.

Aber hier mal meine Ideen, kein Anspruch auf Richtigkeit. Da hier ein Erwartungswert angegeben ist, das soll wohl der Erwartungswert der (normalverteilten) Daten sein, gehe ich davon aus, dass er nicht aus der Stichprobe geschätzt wurde. Dann sieht die Teststatistik so aus [mm] T=\bruch{nS^2}{\sigma^2}, [/mm] mit [mm] S^2=\bruch{1}{n}\summe_{i=1}^{n}(X_i-\mu)^2 [/mm] und die [mm] X_i [/mm] sind die Daten. Und hier dann konkret, unter [mm] H_0: T=\bruch{35*S^2}{40}\sim\chi^2(35). [/mm] Jetzt geht man aber von [mm] H_1:\sigma^2=55 [/mm] aus. Dann ist [mm] T=\bruch{35*S^2}{40}\not\sim\chi^2(35). [/mm] Aber [mm] T'=\bruch{35*S^2}{55} [/mm] wäre es.
Also [mm] T=\bruch{35*S^2}{40}=\bruch{55}{40}*\bruch{35*S^2}{55}=\bruch{55}{40}*T'. [/mm]

Wenn nun gesucht ist [mm] P_{H_1}(T\le 53,2)=P_{H_1}(\bruch{55}{40}T'\le 53,2)=P_{H_1}(T'\le\bruch{40}{55}*53,2) [/mm] hat man wieder eine [mm] \chi^2 [/mm] Verteilung mit 35 FGn.
In der []Wikipedia hab ich nachgelesen, dass für [mm] n\ge [/mm] 30 und wenn [mm] X\sim\chi^2(n), [/mm] dann ist (nährungsweise) [mm] Y=\wurzel{2*X}-\wurzel{2n-1}\sim\mathcal{N}(0,1). [/mm]  Dann wäre also mein Vorschlag, du transformierst T' auf die Gestalt von Y und kuckst mal nach, ob was Gescheites rauskommt.

LG walde

Bezug
        
Bezug
Fehler 2. Art berechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 14.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de