www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fehlerabschätzung
Fehlerabschätzung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Sa 14.11.2009
Autor: didda

Aufgabe
Die Funktion [mm] f:]0,\infty[\to\IR, f(x)=\bruch{1}{x} [/mm] werde im Intervall [a,b] (0<a<b) durch ein Polynom [mm] p_{n} [/mm] vom Grad [mm] \le [/mm] n in den Knoten [mm] x_{i}:=a+i\bruch{b-a}{n}, [/mm] i=0,1,..n interpoliert. Zeigen sie
[mm] |f(\bruch{a+b}{2})-p_{n}(\bruch{a+b}{2})|\le\bruch{1}{a}*(\bruch{b-a}{2a})^{n+1} [/mm]
und folgern sie daraus eine hinreichende Bedingung für a und b so, dass
[mm] \limes_{n\rightarrow\infty}p_{n}(\bruch{a+b}{2})=f(\bruch{a+b}{2}) [/mm]
ist

Hallo Matheforum,
im Zuge meines Mathestudiums ist dieses Semester unter anderem auch die Numerik dran, doch schon bei der zweiten Hausaufgabenreihe habe ich ein Problem, nämlich eben obige Aufgabe.
Leider fehlt mir jeglicher Zugang dazu, ich weiß nicht so genau was ich da machen soll. Muss ich die Funktion erst interpolieren und dann den Fehler überprüfen oder kann man so etwas allgemein zeigen? Wenn ich interpolieren soll, nach welcher Methode?

Wäre echt cool wenn ihr mir da helfen könntet :)

MfG und Danke schonmal.

        
Bezug
Fehlerabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:48 Di 17.11.2009
Autor: felixf

Hallo!

> Die Funktion [mm]f:]0,\infty[\to\IR, f(x)=\bruch{1}{x}[/mm] werde im
> Intervall [a,b] (0<a<b) durch ein Polynom [mm]p_{n}[/mm] vom Grad
> [mm]\le[/mm] n in den Knoten [mm]x_{i}:=a+i\bruch{b-a}{n},[/mm] i=0,1,..n
> interpoliert. Zeigen sie
> [mm]|f(\bruch{a+b}{2})-p_{n}(\bruch{a+b}{2})|\le\bruch{1}{a}*(\bruch{b-a}{2a})^{n+1}[/mm]
>  und folgern sie daraus eine hinreichende Bedingung für a
> und b so, dass
> [mm]\limes_{n\rightarrow\infty}p_{n}(\bruch{a+b}{2})=f(\bruch{a+b}{2})[/mm]
> ist
>
>  im Zuge meines Mathestudiums ist dieses Semester unter
> anderem auch die Numerik dran, doch schon bei der zweiten
> Hausaufgabenreihe habe ich ein Problem, nämlich eben obige
> Aufgabe.
>  Leider fehlt mir jeglicher Zugang dazu, ich weiß nicht so
> genau was ich da machen soll. Muss ich die Funktion erst
> interpolieren und dann den Fehler überprüfen oder kann
> man so etwas allgemein zeigen? Wenn ich interpolieren soll,
> nach welcher Methode?

Du sollst nicht konkret Polynome interpolieren, sondern etwas abstrakt zeigen.

Ihr hattet doch sicher eine Schranke fuer den Interpolationsfehler bei oft genug stetig diffbaren Funktionen, oder? Versuch doch mal sowas hier anzuwenden. Die Funktion $f(x) = [mm] \frac{1}{x}$ [/mm] kannst du ja konkret $n$-mal ableiten und das in die Schranke einsetzen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de