www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Fehlerberechnung
Fehlerberechnung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerberechnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:51 Sa 28.06.2008
Autor: crazyhuts1

Aufgabe
1) In einem rechtwinkligen Dreieck (ROS) kennt man die Länge r (cm) der horizontalen Kathete RO exakt, den Winkel Winkel(ORS)=alpha (rad) aber nur mit dem absoluten Fehler delta alpha (rad). Die Länge L der vertikalen Kathete OS kann daraus nur mit einem gewissen absoluten Fehler delta L ermittelt werden, der bestimmt werden soll.

a) Bestimmen Sie den Ausdruck A, der den Wert delta L in 1.Näherung angibt: delta L in erster Näherung gleich A.
b) Berechnen Sie nach a) den Wert delta L in Näherung für die Daten r=10 (cm), [mm] alpha=60°=\pi/3 [/mm] (rad) und delta [mm] alpha=(1/2)°=\pi/180. [/mm] Berechnen Sie auch L.

Hallo,
kann mir jemand einen Tipp geben, wie ich hier auf einen Ansatz komme? Welche Formel man hier überhaupt verwenden kann, und wie man dabei irgendwie anfangen kann?
Wäre total toll.
Viele Grüße,
Anna

        
Bezug
Fehlerberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Sa 28.06.2008
Autor: M.Rex

Hallo

Bestimme doch zuerst mal eine Formel zur Berechnung der zweiten Kathete L.

Es gilt ja: [mm] \tan(\alpha)=\bruch{Gegenkathete}{Ankathete} [/mm]

Also hier:

[mm] \tan(\alpha)=\bruch{L}{r} [/mm]
[mm] \gdw L=r*\tan(\alpha) [/mm]

Betrachte das nun mal als Funktion der beiden Variablen r und [mm] \alpha, [/mm] also [mm] L(\alpha,r)=r*\tan(\alpha) [/mm]

Und jetzt nutze mal die Formel für die []Fehlerfortpflanzung:

Also hier:

[mm] \Delta{L}=\bruch{\partial{L}}{\partial{r}}*\Delta{r}+\bruch{\partial{L}}{\partial{\alpha}}*\Delta{\alpha} [/mm]

Da der Fehler von r =0 ist, bleibt hier noch übrig:

[mm] \Delta{L}=\overbrace{\bruch{\partial{L}}{\partial{r}}*\Delta{r}}^{=0}+\bruch{\partial{L}}{\partial{\alpha}}*\Delta{\alpha} [/mm]
[mm] \gdw \Delta{L}=L'(\alpha)*\Delta{\alpha} [/mm]

Die Ableitung nach [mm] \alpha [/mm] überlasse ich dann erstmal dir.

Marius




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de